
United States Patent to
Chowning

(54)

(75)
(73)

(22)
(21)

63

(52)
51
(58)
(56)

3,794,748

METHOD OF SYNTHESIZING A MUSICAL
SOUND

Inventor: John M. Chowning, Palo Alto, Calif.
Assignee: The Board of Trustees of Leland

Stanford Junior University,
Stanford, Calif.

Filed: May 2, 1975
Appl. No.: 573,933

Related U.S. Application Data
Continuation-in-part of Ser. No. 454,790, March 26,
1974, abandoned.

U.S. Cl. 84/1.01; 84/101
Int. Cl.'...................... G10H 1700; G 10H 5/00
Field of Search 84/1.01, 1.24, 1.25

References Cited

UNITED STATES PATENTS

2/1974 Deutsch } + c a v w w w a 0 s so 84/1.24

P6 MOD. FREQ.

P8-P7). P6 (P8-P7) DEV2

P7. P6 DEV

P5 CARR FREQ.
main MP3 NOTE buRAT

P4 AMPLITUDE

4,018,121
Apr. 19, 1977

(11)

45)

OTHER PUBLICATIONS

Alan Douglas, "Electrical Synthesis of Musical Tones',
Electronic Engineering, July 1953, p. 278.
Alley & Atwood, Electronic Engineering, Second Edi
tion, John Wiley & Sons, Inc., copyright 1966, pp.
564-572.

Primary Examiner-Stanley J. Witkowski
Attorney, Agent, or Firm-Flehr, Hohbach, Test,
Albritton & Herbert

57) ABSTRACT
Musical sounds are synthesized by means of frequency
modulation with the carrier and modulating frequen
cies being in the audio range and the modulating index
being related to a function to control the bandwidth
and evolution in time of the partial frequencies of syn
thesized sound.

14 Claims, 18 Drawing Figures

U.S. Patent April 19, 1977 Sheet 1 of 17 4,018,121

ATTACK O
Ø. ID 5.2

ID (2.2)
AMP FUNCTION

AMP

ATTACK STEADY STATE DECAY

0 Hz /v1. sal-TIME

?h JULUUUUUIllinn. FIG. I.
?hrime
ANADHDhn WC = 1.2

A1Ih. Y: ? h ID = 2.0
ID2 = 5.2) 4. 11

1In

- ------to rituterrir reeler FIG. 2
P6 MOD. FREQ.

P8-P7). P6 (Ev

P7. P6 DEV

P5 CARR, FREQ.
ana VP3 NOTEDURAT

P4 AMPLITUDE
OUTPUT

U.G. 4 U.G. 3

U.S. Patent April 19, 1977 Sheet 2 of 17. 4,018,121

1.2-, 2 X2

5 FriME 2X 0.0 TIME
AMP FUNCTION INDEX X FUNCTION

AMP

0 HZ- TIME NMN1.
Mattit TTTTTTLILITITLETTLError
MTlin
MTTTTTrier------- WC = 1.2
Y
Mr. WM = 4
CR D X as 2.2)
tra- DX 2s. 8.0

no app a no-amp -- run was a- - was un- a

F (R
E is -----------------. Q. N-------------

Y------------------- R

o - am as us - amo am - a H - - - -

All me - - - - - - - - - - me an a- - - - - - -

FIG.3 V r"

U.S. Patent April 19, 1977 Sheet 3 of 17 4,018,121

(\,.
... AMP 5 SEC. 2 NDEX
FUNCTION

AMP

2 HZ 4||N TIME

R
E Vee sets sets a rests
Q.

WC = .2
WM = 2.2

FIG. A. IDX = 2.0
------u- IDX2= .0

4,018,121

+ TILO

Sheet 6 of 17
U.S. Patent

April 19, 1977

4,018,121
Sheet 7 of 17

U.S. Patent
April 19, 1977

AVOBO

!

· 19I-II C

LINI,$1 ETOI“FILL C)

3TQIz&#
!!!!!

Daea)||||| O

czw?=#F
3)|||||||| C

GN9

4,018,121
Sheet 8 of 17.

U.S. Patent
April 19, 1977

4,018,121
Sheet 9 of 17

U.S. Patent
April 19, 1977

4,018,121
Sheet 10 of 17.

U.S. Patent
April 19, 1977 ty S(nº

2 ST18
2 STIE

U.S. Patent April 19, 1977 Sheet 11 of 17 4,018, 121

D 2 MEM 2.
XSS wDI 8 D MEM
ST 8 D 2 MEM 2
FT 8 D 3 MEM 3
MP9 53A
ST 9 x DI9
FT 9

2) D 4 MEM 4 MP 2 2 MP2 AS2-A w|DI 283 - wDI to Dr 5 MEM 5
ST 2 2 ST2-a-2 D 6 MEM 6
FT 2 3. YE 3 DI. 7 MEM 7 MP 3- 2 74.15 2

3 DI 359:S. ST 3 3 X FTU -3 FT 3-N-7 WENBX

BA B
M DI 8 MEM 8 MP 4 P2

6 N- w DI4AO2 DI 9 MEM 9
ST 3. ST 2 D. O MEM O
FT 4 MPXR FT2 D MEM
MP 5-a 2 74I53 MP3

? EE DI59
FT 5 3. FT3

D 2 MEM 2 MP 6 MP4

DI6A MEs ST 4
FT 6 FT 4 D. 5 MEM 5
MP 7 X5's
AO 7 x DI7SF3
ST 7 FT 5
FT 7 MA 2

MA
WS - MA 2)
WS2 GNO C --

C
WE D SQ

y 7474. 26
36 ra/ I LOAD C

4,018,121
Sheet 12 of 17.

U.S. Patent
April 19, 1977

ANEANE) ~ WIWI ~
dS C.

4,018,121
Sheet 13 of 17

U.S. Patent
April 19, 1977

|

|

Sn8 S 6

SñE STIE 2.99 Sng Sng

|

18
|

Ø

18
|

68
6

Sn8, Sng Sn8 sng Sng Sng

„18
,

98
4.9 G

Sn8 Sn

iz8 28 28
£2]
©

22
i

Ø

8

O

WTES
Ø

gezwu º
OO

4,018,121
Sheet 14 of 17.

ENEOW~—Ç Twiggs € NEOW

ETOJI , LITO Åè?O 1

O

9

d'N

U.S. Patent
April 19, 1977

4,018,121
Sheet 15 of 17

U.S. Patent
April 19, 1977

ON™)

dW

|
-
 2

dW dW dW

EN
E

O

W

~

+

\

dW

4,018,121
Sheet 16 of 17.

U.S. Patent
April 19, 1977

O]
Sng

/II ºff)IJI

4,018,121

C

U.S. Patent April 19, 1977

1

METHOD OF SYNTHESIZING A MUSICAL souND
CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of applica

tion Ser. No. 454,790, filed Mar. 26, 1974, and now
abandoned. :

BACKGROUND OF THE INVENTION
The present invention is directed to a method of

synthesizing a musical sound and more specifically to a
technique utilizing frequency modulation to provide
for the temporal evolution of the spectral components
of a musical sound.
Several types of musical synthesizers are well known

in the art but thus far the synthesis of natural sounds
has been elusive. In a typical type of analog synthesizer,
a voltage controlled oscillator is driven by a waveform
of the desired shape and frequency and then filtered
and passed through an attenuator to provide the proper
envelope to simulate a desired musical or natural
sound. With the foregoing analog synthesizer which is
of the subtractive type, there is, of course, no evolution
in time of the various spectral components or partial
frequencies of the final sound.
Synthesizers utilizing digital techniques have realized

that to create a natural sound individual partial fre
quencies must be generated and combined. One type of
organ is based on this principle where the several par
tial frequencies are added together and then given a
common envelope function. The combinations of such
frequencies are based, of course, on the principles
established in Fourier analysis.
Yet another digital synthesis technique has been

suggested by Jean-Claude Risset and Max V. Mathews,
"Analysis of Musical Instrument Tones," Physics To
day, vol. 22, no. 2, pp. 23-30 (1969). Rissetestablished
that the character of the temporal evolution or the
evolution in time of the spectral components of a sound
is of critical importance in the determination of timbre.
In other words, Risset would suggest that to simulate a
natural sound the amplitude of each harmonic should
be individually controlled as a function of time. In
addition, Rissetsuggested, at least for the production of
the trumpet tones, that the attack envelope, that is, the
initial envelope characteristic for the trumpet tone, has
a distinctive characteristic in that during the attack and
also decay portion of the sound, the energy of the vari
ous frequency components evolve in complicated ways.
To implement the Risset theory with known tech

niques requires a complex digital computer which indi
vidually simulates each frequency component. Thus, at
the present time a real time music synthesizer of the
digital type is not commercially feasible.
The variation of bandwidth with modulation index

has been illustrated in an article by Murlan S. Corring
ton, "Variation of Bandwidth With Modulation Index
in Frequency Modulation," Selected Papers on Fre
quency Modulation, edited by Klapper (Dover Publica
tions, 1970). However, this is merely a theoretical
study of frequency modulation.
OBJECTS AND SUMMARY OF THE INVENTION
It is, therefore, an object of the present invention to

provide an improved method of synthesizing a musical
sound composed of a plurality of partial frequencies in
which the amplitude of each frequency individually

4,018,121

10

15

20

25

30

35

40

50

55

60

2
varies as a function of time in accordance the timbral
qualities of the musical sound to be synthesized.

In accordance with the above object, the method
comprises the steps of selecting carrier, co, and modu
lation, on, frequencies in the audio range. The coe and
a frequencies are modulated in accordance with

e = At oth f(t) sin at

where e is the instantaneous amplitude of the frequency
modulated wave, A is the peak amplitude and I(t) is the
modulation index. I(t) is selected as a predetermined
function to control the bandwidth of the wave and its
evolution in time.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a dynamic FM spectrum useful in under

standing the invention;
FIG. 2 is a circuit useful for practicing the present

invention as represented in MUSICV notation;
FIGS. 3 and 4 are dynamic FM spectra useful in

understanding the invention; and
FIGS. 5 through 18 are block diagrams for a digital

FM synthesizer embodied in the present invention.
DETALED DESCRIPTION OF THE PREFERRED

EMBODIMENTS
In general the present invention provides a frequency

modulation technique for producing a complex spec
tra; that is, one which has a spectral evolution which
evolves in time with relative simplicity. In other words,
the frequency modulation technique of the present
invention provides for specific control of the individual
or partial frequencies making up a total or natural
musical sound.

Specifically, this is accomplished by selecting carrier
and modulation frequencies in the audio range and
frequency modulating the carrier a with the modula
tion frequency, an in accordance with

e re. A cut (t) sin of (1)

where e is the instantaneous amplitude of the frequency
modulated wave, A is the peak amplitude and I(t) the
modulation index. Moreover, the modulation index is
selected as a predetermined function to control the
bandwidth of the wave and its evolution in time.
FIG. 1 illustrates the foregoing for the production of

a brass-like sound. The dynamic spectra of a typical
brass tone is shown as functions of frequency, time and
amplitude in the Attack mode to steady state mode and
into a Decay mode. The curve 10 labeled amplitude
function is a characteristic envelope function of the
overall tone or musical sound and varies the factor A in
equation (1). Curve 11 labeled index function shows
the variation of I(t) from an initial zero point ID to the
final steady state point ID. The spectral evolution
curves of FIG. 1 are based on carrier and modulation
frequencies equal to one another. That is, they have
relative values of 1.0 as indicated in the drawing of
FIG. 1 with ID equal to zero and ID, equal to five. The
overall envelope of amplitude function 10 in essence
varies the peak amplitude A of equation (1). Thus, the
intensity of sound increases from a zero level as shown
by curve 10 to a maximum at steady state and then
decays in a somewhat linear manner.

Risset demonstrated in his analysis of trumpetitones a
fundamental characteristic of this class of timbres; the

4,018,121.
3

amount of energy in the spectrum is distributed over an
increasing band in approximate proportion to the in
crease in intensity. This is illustrated in FIG. 1 where
initially only the carrier and lower harmonics such as
the second and third have any appreciable amplitude
and thereafter during the state state designated SS
the higher harmonics are increased in intensity. Other
characteristics of a brass tone are that frequencies in
the spectrum are in harmonic series, both odd and even
numbered harmonics are sometimes present, and as
stated by Risset but not specifically illustrated in FIG.
1, the rise time of the amplitude or envelope function is
rapid for a typical attack and may "overshoot' the
steady state. Moreover, a comparison of the curves 10
and 11, illustrates that the modulation index varies in
direct proportion to the amplitude of a modulated car
rier wave.
The musical brass-like sound illustrated in FIG. 1 is

preferably achieved by use of a special purpose com
puter or digital FM synthesizer as will be described
below. However, for demonstration purposes as to the
effectiveness of the concept of the present invention a
typical minicomputer can be programmed with a FOR
TRAN IV program written in MUSIC V. MUSIC V is a
well-known program as set out in a look by Max V.
Mathews, The Technology of Computer Music (The
MIT Press, Boston, 1969). The difficulty with using the
MUSIC V program is that it is not a real-time on-line
system.

In general, the MUSIC V sound synthesis program is
a program which generates samples of a sound wave
which are then stored in a memory device as computed.
Digital to analog conversion and filtering then allows
an audio system to regenerate the sound. The program
is designed so that computation of samples is done by
program blocks called unit generators abbreviated
U.G. A typical unit generator is an oscillator which has
two inputs, an output, and a stored wave shape func
tion. The first input specifies the amplitude of the out
put, the second input the frequency of the output, and
the function determines the shape of the output. The
value of an input can either be specified by the user or
can be the output of another unit generator, thereby
allowing multi-level operations on waveforms. A col
lection of interconnected unit generators is called an
instrument which is supplied data through a set of pa
rameters P, through Ps
Referring to FIG. 2, this is a suitable instrument for

producing a FM circuit which generates a dynamic
spectra in accordance with the present invention. A
unit generator 4 produces an amplitude envelope simi
lar to envelope 10 of FIG. 1 and a unit generator 5 a
modulation index envelope similar to envelope 11 of
FIG. 1. The parameters for the instruments have the
following functions.
P = Begin time of instrument
P = Instrument number
P = Duration of the "note'
P = Amplitude of the output wave
P = Carrier frequency
P = Modulating frequency
P = Initial modulation index ID
P = Final modulation index ID.
The parameter values for brass-like tones such as

illustrated in FIG. 1 would be the following:
P = 0.6
P = 1000 (amplitude scaling)
P = 440 Hz

5

O

15

25

30

35

40

45

50

55

60

65

4
Ps = 440 Hz (ratio of cfm = 1/1)
P = 0
P = 5.
A standard MUSIC V program is suitable in many

instances but depending on the musical sound being
generated the instantaneous frequency of the modu
lated carrier at times become negative; in other words,
the final waveform would have a phase angle which
decreases with time. This condition occurs when either
the ratio of the carrier to the modulating frequency is
very small or the modulation index is very large. Thus,
the unit generator U.G. 3 of FIG. 2 must be able to
produce a wave which results from taking the sine of an
angle which decreases as well as increases with time.
The change in code to the oscillator in MUSIC V to
allow for decreasing angle is:
for
290 IF(SUM-XNFUN).288, 287, 287
287 SUM=SUM-XNFUN

substitute :

290 IF(SUM.GW.XNFUN) GO TO 287
IF(SUM.LT.0.0) GO TO 289

and for
GO TO293
292 J6-L1-3-1.

substitute
GO TO 293
287 SUM-SUM-XNFUN
GO TO 288
289 SUM=SUM+XNFUN
GO TO 288

FIGS. 3 and 4 illustrate respectively bell-like and
clarinet-like tones. Referring to FIG. 3, the bell-like
timbre of the family of percussive sounds is developed
around the following two premises:

1. The spectral components are not usually in the
harmonic series, and

2. The evolution of the spectrum is from the complex
to the simple. The amplitude or envelope function of
the bell-like sound illustrated has an exponential decay
which, for example, may terminate at a time of 15
seconds. The index function is directly proportional to
the amplitude envelope. From a MUSICV standpoint,
the parameters to produce a bell-like sound can be the
following:
Prs 15 seconds
P = 1000
P = 200 Hz
P = 280 Hz
P = 0
P = 10.
More importantly, however, the carrier and modula

tion frequencies are related to one another by an irra
tional number or a number ratio which is not an inte
ger. As illustrated in FIG. 3, this causes inharmonic
spectra where the components are not in a relation of
simple ratios. However, such irrational numbers should
be small enough to maintain the density of partial tones
to produce, for example, the bell-like sound of FIG. 3.
The irrational ratio of colon = 11 V2, for example,

which produces a nonperiodic waveform, and where
the bandwidth is controlled by the index function in
time, can produce bell tones and other percussive tones
as shown in FIG. 3.
The same technique can also be used to produce

secondary features of quasi-periodic tones, such as the
"scratchiness" during the attack of a violin tone. This

4,018, 121 5
will be termed a "grit function' hereinafter. In this
case, this index or grit function would only be non-zero
during the attack interval of, for example, 0.025 sec
onds after which the spectrum would be composed
solely of the rationally related colon ratios. This would
demand two modulating oscillators and one carrier
oscillator, where the first modulating frequency is re
lated to the carrier, olon = 1/1, and the second by
11 W2= a?on. In such as case, the FM modulation of
the present invention would occur in accordance with
the following equation:

e - Ali (a t + I(t) sin on t + 1, (t) sin at (2)

where I(t) and an are equivalent to I(t) and cont of
equation (l) and on is an additional modulating fre
quency where colon is equal to an irrational number.
Thus, the first index (t) would have an envelope
shape similar to the amplitude envelope of the brass
like sound of FIG. 2 but in addition the grit function
would be added and would be the predetermined func
tion of the second index I,(t) and having a duration of
less than 200 milliseconds. Thus, for a violin sound
along with the grit function the carrier and first modu
lation frequency would be related by a function 1/1 =
a?on. The first index function would be inversely
proporational to the rising amplitude envelope.
From the foregoing it is apparent that the ratio of the

carrier and modulating frequencies determines the
position of the components in the spectrum. The modu
lation index itself determines the number of compo
nents which will have a significant amplitude. With
regard to simple frequency ratios, N/N, the following
generalizations can be made:

1. The carrier is always the Nth harmonic in the
series.

2. If N = 1, the spectrum contains all harmonics and
the fundamental is at the modulating frequency, e.g.,
1/1,2/1.
3. When N is an even number, the spectrum contains

only odd numbered harmonics, e.g., 2, 4,3/2,%, 5/2.
4. If N = 3, every third harmonic is missing from the

series, e.g., 4, 4, 4/3, 5/3.
FIG. 4 illustrates a clarinet-like timbral sound where

the index function curve is inversely proportional to the
leading edge of amplitude function. In addition colon =
%. This, as stated above in rule (3) produces only odd
harmonics which is a well known characteristic of the
clarinet sound.
With respect to the grit function (t) this is of a very

short duration compared to the period of the carrier
frequency, ().
The special richness which may be produced by the

technique of the present invention lies in the fact that
there are ratios of the carrier and modulating frequen
cies and values of the index which will produce side
band components that fall in the negative frequency
domain of the spectrum. These negative components
reflect around 0 Hz and "mix' with the components in
the positive domain. The variety of frequency relations
which result from this mix is vast and includes both
harmonic and inharmonic spectra.
A simple but very useful example of reflected side

frequencies occurs if the ratio of the carrier to modu
lating frequencies is unity. For the values
a = 100 Hz
a = 100 Hz
= 4

10

15

20

25

30

35

40

45

50

55

60

65

6
The component at 0 Hz represents a constant in the

wave. The remaining lower-side frequencies are re
flected into the positive frequency domain with a
change of sign (inversion of phase) and add algebra
ically to the components which are already there. For
example the second lower-side frequency will add to
the carrier with like signs, therefore increasing the
energy at 100 Hz, while the third lower-side frequency
will add to the first upper-side frequency with unlike
signs, decreasing the energy at 200 Hz. The foregoing
as well as other facets of the present invention is dis
cussed in an article by the present inventor in the Jour
nal of the Audio Engineering Society, September, 1973,
entitled "The Synthesis of Complex Audio Spectra by
Means of Frequency Modulation.”
A formant peak may be accomplished by the FM

modulation technique of the present invention in ac
cordance with

e F Ai (cuct act t (t) sin cont) (3)

where oc -- oc are two carrier frequencies having
ratios with on. Such ratios typically being cofon = 7/1
and oc1a)n = 1/1 and the 7/1 ratio placing the formant
peak at the seventh harmonic.
From the foregoing it is apparent that the present

invention provides a simple technique for providing for
the timbral evolution for the various frequencies or
partials of a complex musical sound. Moreover, the
present invention realizes such timbal evolution espe
cially in the attack portion of the sound often provides
the "signature' of the sound. In other words, this is
what the listener judges as the lively quality of the
sound. In contrast, it is the fixed proportion spectrum
of most synthesized sounds that readily imparts to the
listener the electronic cue and lifeless quality. The FM
synthesis technique of the present invention is far sim
pler than additive or subtractive synthesis techniques
which can produce similar spectra. It is believed that
the FM technique of the present invention duplicates
natural sounds more cost effectively than if a very com
plex computer were utilized to control the amplitudes
of individual partial frequencies in a very precise man
ner. In other words, although the control of the present
invention is seemingly limited in that precise amplitude
control of each partial frequency cannot be varied fully
as desired, this proves to be no limitation as far as the
subjective musical impression is concerned.

Finally, the present invention may be capable of
generating "musical sounds' which have not hereto
fore been heard by a human being. Thus, the use of the
term "musical sound' is not meant to be limited to the
standard musical sounds now known.
From the foregoing, it is apparent that the frequency

modulation technique of the present invention is quite
different from the addition of a typical vibrato or peri
odic variation of a frequency around some average
which is added to a musical sound. In vibrato, the mod
ulating frequency is merely a few cycles per second and
thus the ear has little difficulty tracking the instanta
neous frequency of the carrier. However, where the
carriers and modulating frequencies are either equal or
of approximately the same order of magnitude, the ear
can no longer track the instantaneous change in fre
quency as a sweep frequency but rather perceives a
complex spectrum.
Although the MUSIC V program will produce musi

cal sounds in accordance with the FM techniques of

4,018, 121
7

this invention, if real-time operation is desired, a digital
FM synthesizer should be used.
FIG. 5 illustrates a micro-programmed device which

has a digital output on line 21 which is converted to
analog output by digital to analog converter 22 to pro
duce the desired musical sound at loudspeaker 23. The
device has as its inputs a 3 bit binary number represent
ing the instrument or rather a selection of different
timbres or tone quality, a seven bit binary number
representing the desired frequency of the musical note
and a key bit which initiates the generation of the musi
cal sound. The synthesizer will then generate succes
sive 16 bit binary numbers on its output 21 which rep
resents the waveform at 50 microsecond intervals. If
the device is to be used as the sound generating part of,
for example, an organ all that is required is to feed the
number of the key that is being depressed as the fre
quency information and, of course, the actual pressing
of the key. All of the blocks of FIG. 5 are shown in
detail in subsequent drawings and can be made up with
standard off-the-shelf components. Each block in
FIGS. 6-18 is labeled with a standard type number
which may be found in the TTL Data Book, Number
CC-411, Texas Instruments, Incorporated and INTEL
Data Catalog, October; 1973, and ordered from Texas
Instruments Components, Group, Market Communica
tions Depart., P.O. Box 5012, M.S. 84, Dallas, Texas
75222 and Intel Corporation, 3065 Bowers Avenue,
Santa Clara, California 9505l.

Referring now specifically to FIG. 5, there are illus
trated both sources of information and sinks. All data is
communicated over the data bus 24. The sources of
information are a scratch pad memory 26, envelope
memory 27, initialization memory 28 and a binary
constant 29. The sinks are a multiplier 31, adder 32 and
the output latch for register 33. Two other sinks are not
directly connected to the data bus are the sine memory
34 which is a read only memory and in addition,
scratch pad memory 26 which can also accept data.
Information in the search pad memory 26 is inputed by
a four way selector 36 and a frequency memory 37.
Envelope counter memory 38 which is driven by an
eight bit binary counter 39 provides a segmented enve
lope as will be discussed below.

Lastly, the actual program for the digital synthesizer
is provided by an instruction memory 41 and its asso
ciated latch 42. Such memory is shown in greater detail
in FIG. 6 and consists of four 74186 read only memo
ries that can hold 64 eight bit words each. Thus, a
combination of two of the memories produces a stan
dard 16 bit instruction word labeled 10 through I15.
The memory pair 41a is for the 64 word running pro
gram and the pair 41b for the start up program. The
start up program is initiated by a true signal on the
active input. After this 64 word program is run through
once, the running program then cycles. Each cycle is
50 microseconds in which time the running program
cycles through all 64 words and then starts at the begin
ning again. This 50 microseconds is also the sample
time; that is a new sample is delivered to the D/A con
verter 22 (FIG. 5) for every sample time. Memories
41a, b are addressed by the program counter which
consists of blocks 43 and 44 which has as outputs PC0
through PC5. These signals address the instruction
memories at the inputs indicated advancing the instruc
tion and then wrapping around at 63 back to zero. The
latches 42 store on each cycle the output of the read
only memories 41; that is, the 16 bits of the instruction

10

15

20

25

30

35

40

45

50

55

60

65

8
word I0-115 are stored into the latches. The outputs of
the latches perform the following functions. The MA0,
1,2,3, outputs serve as a memory address for the
scratchpad memory 26 (FIG. 5). WS0, 1 controls the
selector 36 which controls what is written into the
scratchpad memory 26. In general the scratchpad
memory 26 can be written into from four sources.
Namely, the multiplier 31, adder 32, sine memory 34
and frequency memory 37. This occurs at initialize
time discussed in conjunction with FIG. 11.
Referring now again to FIG. 6, the outputs LS0, 1,

and 2 form a three bit binary number which decodes to
one of either latch selects which are for the purpose of
directing information to the system. Specifically, one of
its functions is to specify which data sink will latch the
data that is on the bus. RE0, 1, 2 form a three bit binary
number which selects a data source to be gated onto
the bus. LOB is for the purpose of gating the low order
eight bits of the scratchpad memory onto the bus. The
purpose of LOB is for sine wave interpolation where
the 16 bit angle of which the sine is being taken is
divided into a high order eight bits and low order eight
bits. Since the sine memory 34 itself only accepts the
high order eight bits, the interpolation is done on the
low order eight bits and the LOB signal essentially turns
off the high order bits and sets them to zero when it
goes onto the bus. ISEL and SSEL select which enve
lope function is of interest. They are finally directed to
the envelope memory 27 of FIG. 5. They can select
either an amplitude function or a modulation index
function or the second modulation index function. The
WE signal in this instruction word from the latches 42
is write enable and enables writing into the scratchpad
memory 26. Lastly, WS0, 1, provide the scratchpad
memory write data and selects one of four inputs to the
scratchpad memory which are multiplier, adder, sine
table and frequency memory,
The remaining gating shown in FIG. 6 is AND gate

40, OR gating 46, and D flip-flop 47 which serve the
purpose of shutting off initializing after start up. During
start up the system is in INIT state. This state is com
pleted by an Init Done signal (which is an input to OR
gate 46) which means that the program counter has
overflowed and the initialization program is completed.
In general in operation if, for example, an update on
the amplitude of the output sinusoid is desired, this is
accomplished by storing the current value of the ampli
tude of the sinusoid and scratchpad memory 26 and
then reading out of the envelope memory 27 the incre
ment to that value. Thus, on one instruction cycle the
scratchpad memory will be gated onto the data bus by
the adder latches of adder 32 and the adder will latch
onto the current amplitude position. On the next in
struction cycle the envelope memory 27 is gated onto
the data bus and the other adder latch activated. A few
microseconds later, the sum appears at the adder out
put, AO0-15.
FIG. 7 provides control logic for the latch instruction

outputs of FIG. 6. Specifically the latch select bits LS0,
1, 2 are coupled to a decoder 48 which produces when
enabled a signal on one of eight different lines. These
include the multiplier latch signals MPL1, 2 and adder
latch signals AL1, 2. Also, sine table latch, ST and a
signal EL which is used as a control signal to cycle the
envelope memory onto the next segment; this occurs
once every 63 instructions. This is done because of a
lack of sufficient bits in the instruction word. The last

4,018,121 9
output "load output buffer" causes the output latch 33
(FIG. 1) to store words from the data bus.
Control bits RE0, 1, 2 to decoder 49 determine

which of four data sources are gated onto the data bus.
Output SP gates the scratchpad memory onto the bus;
IM gates the initialization memory 28 onto the bus.
Such memory contains data as for example, the factor
by which the fundamental frequency is multiplied to
produce either the modulating frequency or carrier
frequency. As is apparent from the foregoing examples,
this is generally an small integer factor of 1,2,3. This
is, of course, done at the initialization time. The con
stant C1 is % which is the difference between a sine and
cosine angle so that a cosine angle may be processed as
a sine angle during sine table table interpolation. C2 is
unused. ENV gates the envelope memory 27 onto the
bus which, of course, contains the increment that is to
be added to the current value of either the modulation
index or amplitude envelope for the next step.
Memory 48 is enabled by a bus enable input which is

produced by the gate 51 having as inputs load, CLR2
and latch. Decoder 49 is enabled by single I Load. Both
load and latch are generated by the four coupled

flip-flops 52 which are fired in order; that is, only one
of them is true at any one time. Flip-flops 52 count the
master clock (MRCLK) and each time the master
clock goes true the stored bit advances to the next
flip-flop. The first flip-flop increments the program
counter with the output PCINC and in turn the pro
gram counter causes data to be produced from the read
only instruction memories 41. At the next clock pulse I
Load will be produced which latches the instruction
word and gates the data source onto the data. The next
clock cycle is wait and on the last clock cycle LATCH
will come true and will cause whatever data is present
on the data but to be latched into one of the data sinks.
This completes an instruction cycle at which time the
initial flip-flop causes the program counter to incre
ment another step. Thus, in operation in general at I
load the instruction word is produced and control sig
nals propagate around the system, the data getting
gated onto the bus and then latched off the bus to
perform whatever function is desired as, for example,
adding or multiplying
The last two functions illustrated in FIG. 7 include

the production of the master clock which is produced
by the crystal clock 53. The clock runs at a rate such
that an instruction word is executed in about 800 nano
seconds which thus allows 64 instruction words in 50
microseconds, Finally, OR and AND gates provide a
clear pulse so that when power is supplied to the device
all registers are reset.
The major states of the device from a system stand

point are Idle, Init, Run, and Decay. In the ldle state
there is no note playing and no key is depressed. When
a key is depressed the device goes into Inite state and it
runs the 64 word initialize program in the instruction
memory. When that program is finished, it automati
cally goes into Run state and it stays in Run state until
the key is lifted. When the key is lifted it goes into
Decay state. How long it stays in Decay state is deter
mined by the Decay envelope in the envelope memory.
When it completes the Decay envelope, then the device
goes back into the Idle state. There are also some sub
states associated with envelope control. For instance,
the Run state is divided into two sub-states called At
tack and Steady State and Decay major state is called a
run-down state in the envelope control. This renaming

10

15

20

25

30

35

40

45

50

55

60

65

10
is to prevent a timing problem. The timing problem is if
the key stroke is very very short such that the device is
still in the Attack sub-state but the key is lifted the
envelope control keeps it in Attack state until the at
tack is finished and then goes into Decay state; so it will
never abort the attack because of a very short key
stroke.
The foregoing is illustrated in the state diagram of

FIG. 8. Changing states is done on the AND of the
previous state and the state changing condition and the
clock. For instance, to get out of idle state, there must
be present the AND (gate 56) of Idle, the key has
become depressed, and master clock (MRCLK); gate
57 goes into the Init state. To get out of Init state, Init
Done must come up to activate gate 58. Init Done
(FIG. 6) comes true when the program counter 44
reaches 63; that is, the initialize program is finished.
Run state is gotten out of by being in Run state and the
key being raised; that is, "Not" Key comes true and the
master clock closes gate 59 to go into Decay. Finally
Idle state is returned to by being in a Run Down sub
state as Envelope Done comes up, Decay is true and
master clock. Thus, if the device is in Decay mode and
the envelope has cycled all the way through into Run
Down mode and is done, signified by Envelope Done,
the idle is returned to.
FIG. 9 contains the blocks envelope memory 27 and

envelope counter memory 38 of FIG. 5. These are all
INTEL (trademark) model 1302 (see INTEL Data
Catalog) read only memories. The envelope memory
consists of two 1302s which provide 256 different 16
bit words. These 16 bit words as they come out of the
memory are labeled Env 0, 1, through 15. They are the
increments to the current position, e.g., the attach
amplitude or the modulation index or the second mod
ulation index. The envelope words are the amount that
is added to those amplitudes at each sample cycle; that
is, at one loop of the instruction memory; (50 micro
seconds). The envelope counter memory 38 specifies
the number of sample cycles where the above incre
ment is true; the process is a piece wise linear approxi
mation and the counter memory specifies the number
of samples for each piece of the piece wise linear seg
ment. The number ENV 0 through ENV 15 is actually
related to the slope of that piece wise linear segment.
The counter memory generates an eight bit count CNT
0 through 7.

All of the above is addressed by various inputs. There
is instrument number which is a three bit number INS
0, 1 and 2 where different Attack and Decay envelopes
are selected for different instruments. With the seg
ment number SEG 0, 1, an Attack can be synthesized
on any instrument with up to four segments and the
Decay with up to four segments. Also gated is the signal
"attack" which selects a different set of piece-wise
linear segments for the attack compared to the decay.
The signal Init is ORed with Attack to ensure that the
data will be ready as soon as the Init state is completed
and Attack is begun. The other two bits in the eight bit
address are SSEL and ISEL from the instruction word;
they select the desired envelope which may be the
Attack envelope, the first modulation index envelope
or the second modulation index envelope.

All the other gates on FIG. 9 gate the envelopes onto
the bus. They are tristate buffers which have three
states; true, false and not enabled. Data is gated onto
the bus with the OR of two signals; ENV which is from
the read enable bits of the instruction word, that is

4,018, 121
11

decoder 49 (FIG. 7) and CNTEN or count enable.
Count enable is true if the device is in Attack and not
in Decay; that is, count enable specifies that the ampli
tudes are changing. Otherwise the device is in steady
state and the amplitudes are not changing and there
fore zeros are gated onto the bus. Gating zeros onto the
bus is illustrated in FIG. 7; gating the envelope incre
ment itself onto the bus as shown in FIG. 9.
FIG. 10 illustrates envelope control and contains two

sets of counters. The first set of counters 61 consists of
three counters which take in the count from the enve
lope counter memory which is an eight bit count 0-7
and counts the number of EL signals. The EL signal is
a decoded latch select and there is one in every sample
cycle; that is, one instruction of the 63 instructions
turns the EL bit on. Thus, counters 61 essentially count
samples. The number that comes out of the envelope
counter memory is the negative or the two's comple
ment of the number of samples to count until the seg
ment is completed. Counters 61 are enabled by
CNTEN, count enable, and they only count if in an
attack mode or run-down mode which is physically the
Attack or the Decay of the signal. When counters 61
overflow, CNTOV goes true, counter overflow, and
allows the other counter 62 in FIG. 10 to count.
Counter 62 counts which of the four segments of the
piece-wise linear approximation is being processed.
That is, at initialize time counter 62 is cleared and its
output is Seg 0 and Seg 1 and this goes directly into the
address of the envelope memory and the envelope
counter memory. In operation, some number of sam
ples is counted and then CNTOV goes true and counts
to the next segment. A new count is reloaded and the
number of samples in that segment is counted. When
four segments have been counted through, envelope
done comes true. That will cause, if in an Attack mode,
a move to Steady State; in Run Down it will cause a
return to Idle.
There are a few other input signals. For instance,

load enable, LDENB, enables the loading of the sample
counter 61 by the envelope counter memory 27 and is
generated by the OR (gate 63) of load and CNTOV
when the counter overflows; CNTOV has gone true
and a new count is ready to be accepted. However,
upon going into Attack mode the count has not over
flowed and some way of getting it started is needed.
Thus, when attack first goes true, Load is set.
Count enable, CNTEN is generated by the OR of

Attack and RUN Down (gate 64). This is essentially
true during the Attack Decay portions of the waveform
but it is not identical to the Decay major state. Specifi
cally, four flip-flop 66 form a four-flop. Attack is gener
ated by going into the Run major state, then Attack
goes true and it also brings Load true. But Load only
stays true for one sample cycle whereas, Attack will
stay true until Envelope Done comes up; that is, until
all four segments have been counted through. Thereaf
ter, Steady State mode will be stayed in until essentially
going into Decay major state; that is until the key is
lifted; then the device goes into Run Down mode. R
load is generated like Load; that is, it stays on momen
tarily whereas Run Down stays on until Envelope Done
comes true. If the key is tapped very very shortly, the
major state will change to Decay but the device will
stay in Attack mode until Envelope Done comes true;
then it will go into Steady State for just an instant and
then flip into Run Down mode.

10

20

25

30

35

40

45

50

55

60

65

12
FIG. 11 is a more detailed diagram of blocks fre

quency memory 37 and initialization memory 28 of
FIG. 5. The frequency memory is coupled directly to
the selector 36 for the scratchpad memory 26 and the
initialization memory 28 can be gated onto the bus.
Since the initialization memory is only 8 eights, only
the higher order 8bits is gated onto the bus and the low
order 8 bits are gated as zeros as illustrated in FIG. 12.

Referring in detail to FIG. 11, inputed to the fre
quency memory is a 7 bit number, FREQ 0 through 6.
In actuality, this is the number of a key starting at A
natural 27.5 Hertz and every number specifies a half
step from that low A, that is, 128 frequency numbers
can specify a seven octave range above low low A. This
is transformed via the frequency memory into an actual
frequency number. Thus the frequency number is the
amount that is added to the current position of the sine
table to get the next position in the sine table. That is,
this is the incremental angle of which the sine is taken.
Memory outputs FTO through FT15 are coupled into
the selector 36 (FIG. 5) which can be selected by WS0
and 1 in the instruction word which is the write select
into the scratchpad memory.
The initialization memory is addressed by the three

bits of the instruction and also by a four bit counter;
that is, up to 16 initialization constants can be supplied
and every time the program asks for a new initialization
constant with the IM signals (decoded from RE0
through 2) the read enable, which gates data onto the
bus, will count counter 67 and thus go to a new initial
ization constant. The program essentially has to know
what these constants are and what order they are stored

The kind of constants that are stored in the initializa
tion memory are the following: for most versatility, the
frequency of the carrier sinusoid and the modulating
sinusoid are not necessarily the same frequency as the
fundamental frequency. The difference is that they will
in general be small integral multiples of the fundamen
tal frequency. Those integral multiples 0, 1, 2 or 3 or so
are stored in the initialized memory to be later read
out. The other information that is stored in the initial
ized memory are the beginning amplitudes. For exam
ple, some amplitude envelopes start at a non-zero num
ber like the bell which starts at a loud point and decay
down. However, for most instruments, those numbers
are 0. These are stored in a specific order; i.e., the
multiplier for the second modulating frequency, the
multiplier for the first modulating frequency, and the
multiplier for the carrier frequency. Gated out of the
initialization memory onto the data bus (IM0-7) are
the beginning positions for the angle of which the sine
is taken, which in most cases is 0. The next three num
bers gated out of the initialization memory are the first
modulating index, I, the second modulating index, I,
and the signal amplitude A. I, , and A are actually
locations in the scratchpad memory. The following is a
list of the scratchpad memory locations and then the
symbolic names.

SP locations:
pos
fr
fr108
pos2
fr2
fr208
pos3
fr3

; Fm2
; Fm28 |

-continued
O l, ; Index 2 | 8

11 ; Index 1 || 8
12 A ; Amplitude envelope
13 ti2 ; Temps
4
5

Specifically, fr1 specifies the frequency of the second
modulating index, pos1 is the angle of the second mod
ulating sinusoid; fr2 and pos2 are the frequency of the
first modulating waveform and the current angle of the
first modulating waveform and fr3 and pos3 are the
carrier frequency and its position; A, I and I are the
amplitude envelope, index 1 and index 2, respectively.
There are three temporary registers in the scratchpad
memory designated t1, t2 and ti2. Two other numbers
fr108, fr208 are the modulating frequencies times 8.
This is a constant offset and is used because in actuality
and indexes are divided by 8 to provide scaling because
of a fixed point system.

Lastly, FIG. 11 shows the tristate buffers that gate the
initialization memory onto the data bus.
FIG. 12 illustrates the scratchpad memory 26 (FIG.

5). This contains the scratchpad memory itself which
are four read/write memories. These are four sixteen
bit memories. Data into the scratchpad memory comes
out of selector 36. The selector is selected by WS0 and
1 which comes out of the instruction word as shown in
FIG. 6. This can gate in either the output of the multi
plier which is MP0 through 15, the adder AO0 through
15, the sine table STO through 15 and the frequency
memory FTO through 15 and the selector produces an
intermediate signal OI0 through 15 which goes directly
into the scratchpad memory data inputs. The scratch
pad memory is always reading but it is also write en
abled by WE which is a bit in the instruction word; that
is, write enable, WE, and its clock ILOAD.
The write enable on the scratchpad memory is true if

WE, the write enable bit of the instruction word is true.
It is clocked on not I load, that is, the falling edge of the
instruction load. This will set the write enable true and
as soon as the latch timing signal comes up, the write
enable will be turned off; that is, presumably the data
will have been written by then.
The circuit of FIG. 13 accomplishes three different

things related to the data bus. It can gate scratchpad
memory output which is Mem 0 through 15 onto the
data bus and it can gate zeros onto the data bus. This is,
of course, important for the envelope control during
steady state where the amplitudes and modulation indi
ces are not changing. Also zeros can be gated onto the
high order bits of the bus if the LOB, low order bit
signal is true in the instruction word. This is for doing
sine table interpolation. Finally, the third thing which is
gated is a constant of 4; that is, the higher bits on 94 of
a rotation onto the bus. This is controlled by signal C1
which is one of the read enables; that is, REO through
2 go into a demultiplexer which will produce one of the
signals C1. This is a constant which is added to the
angle of the sine to get a cosine. It is essentially 3/2 pi.
On the left hand side of the bus are gates 68 that

control operations. For instance, it is desired in a
steady state condition to gate 0 on the low order bits
8-15 of the bus on the condition that the initialization
memory, the IM signal, is being read from and the
constant C1 from the envelope is present. It is the OR

4,018,121

10

15

20

25

30

35

40

45

50

55

60

65

14
of those conditions which produces a signal ENBGND
8-15, enabled ground, on 8 through 15 and this in turn
controls the tristate latches which will gate ground on
the low order bits of the bus. The high order bits will
gate bits 0 through 5 and bits 6 through 7 slightly differ
ently. That is, all the bits are ground on the condition
for that of steady state for the envelope. The only rea
son bits 0 through 5 are gated differently from bits 6
through 7 is that the constant C1 only occupies the first
6 bits and the rest of them of zeros. If C1 is true, then
zeros are gated onto bits 6 through 15 of the bus and
ground is enabled; that is, zeros are enabled on 6
through 7 separately; and the condition under which
zeros are gated on 6 through 7 are if LOB is true; that
is, low order bits are being gated. Zeros are gated onto
the high order bits of the data bus from the instruction
word if ENV and not count enable, CNTEN, are true;
that is, if there is an envelope request and are in steady
state or there is an instruction memory or an initializa
tion memory request, or if the constant is being gated
onto the bus. Zeros will also be gated onto the bus bits
0 through 5 if LOB is true; that is, low order bits only
and if envelope control and steady state are true.
FIG. 14 illustrates the adder 32. It has three parts; a

16 bit adder 70 and two input latches 71,72. The input
latches are strobed or made to latch data from the bus,
16 bits, on the AL1 and AL2 signals; AL1 latches 71
and AL2 latches 72. The output of these latches goes
directly into the 16 bit adder 70. The output of the
adder is called AO 0 through 15. It is a 16 bit number.
The output of the adder goes to two different places;
sine table input latch and the scratchpad memory write
select. When the angle of a sinusoid is being updated
the angular increment is added to it and at the same
time this data can go to the sine table. Thus, not only
can the updated angle be stored back in the scratchpad
memory but the sine table loop up can be started at the
same time.
FIGS. 15 and 16 control the 16 bit multiplier 31

(FIG. 5). The 16 bit multiplier has two latches, a third
latch for the partial product, a 16 bit adder, a 16 bit
gate which gates the multiplicand into the 16 bit adder
to add it to the partial product when shifted and it has
some control logic. The control logic is essentially the
multiplier latch which is actually a shift register 73 and
a counter 74 that will count 15 times and then stop. It
operates as follows: on signal MPL2 the multiplicandis
latched into one of the multiplier latches. On signal
MPL1 the multiplier is latched into a 16 bit shift regis
ter, and MPL1 also resets the multiplier control circuit.
That is, the fall of MPL1 will gate MP load true which
causes on the next fall of MP step, the counter to load.
The counter is loaded with +1 to take 15 steps not 16.
MP step is produced by MP GO and master clock flip
flop 76. However, for synchronizing purposes the out
put is gated round into the input. The sequence of
operation is as follows: MPL1 (the signal which con
trols the gating of the multiplier input latch) and that
gates MP load true which causes the load enable of the
counter to go true and then on the next master clock,
the counter will get loaded with a +1 and MPGO will be
brought ture which will cause MP load to become false;
then once MP GO is true, then each MP step is cycling
the multiplier. With the multiplier itself the serial out
put of the 16 bit input latch 77 and shift register 73 is
called MC enable (multiplicand enable) and is coupled
into a set of gates 78 (FIG. 16) which will gate the
multiplier into the adders 79 and which adds the partial

4,018,121
15

product to the multiplier. At each step the MC enable
or multiplicand enable will either gate the multiplicand
into the adders or not. So all 15 bits of the multiplier
are stepped through. The partial product is latched by
latch 81 into a 16 bit register on the output. This is not
shown on the block diagram but is internal to the 16 bit
multiplier block. An output controlled by MP step. The
output of latch 84, the signals MP 0 through MP 15, is
the partial product which becomes the product after
the last multiplier step. The shifting right of the partial
product is accomplished in FIG. 16 simply by the or
dering of the bits as they go back into the adder; that is,
the bits are shifted right by one. In the first adder 79
there is the sign bit twice MP0 as the first two bits. That
is, an arithmetic two complement shift right where
copy the sign bit is copied into the vacated places; that
is, the low order bit is discarded on every cycle because
a multiply will eventually end up with a 31 bit resultant
and all that is necessary is 16 bits. The multiplier is
stopped by the counter 74 overflowing and this pro
duces MP clear which turns off MP 60 and the multi
plier halts. The product is available at the multiplier
output (latch 81) as signals MP0 through 15. These
multiplier output signals will remain true, of course,
until the next time multiplication is begun. The total
multiplication takes 15 clock steps. A clock step is
about 200 nanoseconds so the whole multiply takes 3
microseconds or roughly five instruction cycles. Thus
on the fifth instruction cycle after the multiplication is
initialized, the output can be used.

ENSTRUCTION MEMORY locations
RUNNING program

5

10

15

20

25

30

16
The device is also busy doing other things during that

time. It is slightly pipelined; that is, the multiplier may
be loaded up and while computing other things like
update amplitude or modulating index may be accom
plished.
FIG. 17 is the output register and it is gated on the

signal "load out buf" which is produced by the latch
select bits LS0 through 1 from the instruction word;
this grabs 16 bits off of the bus and latches them. The
program goes through computing what the output
waveform should be and then at the very last step it
gates the waveform onto the data bus and strobes "load
out buf' which causes the output word to be sent to the
D to A converter 22 (FIG. 5).
FIG. 18 is a sine table. It consists of a 256 - 16 bit

word read only memory. The output of the read only
memory is called ST0 through 15 and goes back into
the input selector for the scratchpad memory. The
address for the sine table comes out of the adder output
AO0 through 7; that is, only the high order 8 bits are
looked at and latched on the signal ST which is again
generated from the latch select bits from the instruc
tion word LS0 through 2. When ST occurs, the adder
output is latched and produces internal signals which
are SA0 through 7; that is, the sine address or sine
angle. With these memories, it can take as long as a
microsecond to get the data out so one microsecond
later or roughly two instruction cycles, the sine is avail
able for use.
The running program for the foregoing is shown be

low.

ISel,MAWS, LS,RE,LOBSSELNE
O123456789012345

0. pos1-GAL1 0,0,0,3,0,0,0 000000001 00000

l fri-SAL2 0,1,0.4, l,0,0,0 00001000000000

2 AC-Geposi, AO-DST 0,0,1,5,0,0,0,1 0000001101000001

3 12-CAL1 0, 10,0,3,1,0,0,0 0.100000011001000

4 MO-Got1-Goutbuf 0,140,7,1,0,0,1 01 10000 10000

5 ST-Set 1-GML2 0,14,2,2,1,0,0,1 0 1 10010010001001

6 12-me ML1 0, 10,0,1,1,0,0,0 000000001001000

7 env(00)-seAL2 0,0,0,4,5,0,0,0 000000010010000

10 AO-GI2 1,10,1,0,0,0,0,1 1 10000000000001

pos2-GAL1 1,3,2,3,1,0,0,0 100 0001100000

12 fr2->AL2 4,0,4, 1,0,0,0 01.00000000000

13 AO-G pos2, AO-SST 13,1,5,0,0,0,1 100 0 1 0100000

14 MO-Get-GML2 1, 14,0,2,1,0,0,1 1 1000001000001

15 fr108-GML1 1,2,0,1,1,0,0,0 1001000001001000

16 pos2-GAL1 13,0,3,1,0,0,0 10011000 1001000

17 C1-GAL2 l,0,0,4,3,0,0,0 1000000000 1000

20 ST-Got1, AO->ST l, 14,2,5,0,0,0,1 1 1 000000000

21 I1-S-AL1 l, 10,3,1,0,0,0 110010001001000

22 env(10)-G-AL2 1,0,0,4,5,0,0,0 1000000100101000

23 MO-Goti2 1, 13,0,0,0,0,1,1 110110000000001

24 ST-Get2-GML2 l,15,2,2,10,1,1 1110100100001

4,018,121 17 18
-continued

INSTRUCTION MEMORY locations Isel,MAWs,LS,RE,LOBSSELNE
RUNNING program 10123456789012345

25 pos2(lob)-SMLl 13,0,1,1,1,10 000000000

26 AO-Sel 1,11,0,0,0,1,1 100101000000011

27 A-GAL1 1,120.3, 1,0,1,0 1101000011001010
30 env(11)->AL2 10,04.5.0.1.0 1000000100101010
31 AO-GOA 0,12,1,0,0,0,0,0 001001000000000

32 t1->AL2 0.1404.1,000 0110000100001000
33 nop 0 O

34 MO-et-GAL 0,140,3,0,0,1 01 1000001100100

35 Ao-Ot1-GML2 0,14, 1,2,1,0,0,1 00001010001001
36 11-GMLl 0,11,0,1,1,0,0,0 01.000000100000
37 nop 0 0
40 nop 0 O
41 nop O 0
42 nop 0 0
43 nop 0. 0.

44 MO-Dt1-GML2 0, 14,0,2,0,0,0 000000000000
45 fr2o8->ML 0.5,0,1,1,0,0,0 0000000001000
46 nop 0. 0.
47 nop 0. 0
SO nop 0. O
S1 nop 0 O

S2 ti2-S-AL1 0, 3,0,3,1,0,0,0 001 1000 1001000

53 MO-Ot1-GPAL2 0,140,4,,0,0,1 O 1000000001001

54 AO-Sti2-OAL2 0,13,14, 1,0,0,1 0101101100001001
S5 pos3-GAL1 0.6,0.3, 1,0,0,0 001 100001100000

56 AO-Oti2, AO-DST 0,13,15,0,0,0,1 01010101000001
57 ti2-GAL1 0,13,0,3,1,0,0,0 01011 0001100,000

60 C1-GAL2 0,0,0,4,3,0,0,0 0000000000000

61 ST-Setl, AO-GST 0,4,2,5,0,0,0,0 01.000101000000
62 nop O O

63 ti2(lob)->ML2 0,13,0,2,1,1,0,0 001 00010001100

64 ST-Ot2-OMLl 0,15,2,1,1,0,0,1 0.10110001001001
65 pos3-DAL2 0.6,0.4, 1,0,0,0 001 100010000000

66 fr3-GPAL1 0,40,3,1,0,0,0 0010000011001000

67 AO->pos3 0,6,0,0,0,0,1 0000100000000
70 nop 0 0
7 nop O 0

72 MO-D2-OALl 0, 15,0,3,,0,0, 0.100001100001
73 t-DAL2 0,150,4, 1,0,0,0, O 1010010000000

74 AO-Gott-SeML2 0,14,12,1,0,0,1 01 100000001001

75 A-eML.1 0, 12,0,1,1,0,0,0 0.1000000100000

76 -DEL 0,0,0,6,0,0,0,0 00000000000000
77 nop 0 O

In the above running program the left hand column
has the actual program counter number in octal form.
The second column is a shorthand notation for describ
ing where data is flowing. In general, the adder latches
are AL1 and AL3, multiplier latches are ML1 and 65
ML2, the sine table latches ST, the envelope memory is
ENV. For the state of bits Isel and Ssel they are ENV
(00, 01, 10, 11) to reflect the four possible states. For

the writing back into the scratchpad memory there is
either AO for adder output, MO for multiplier output,
ST for sine table and FT for frequency table. This is,
only in initialization, of course.
The program of TABLE I is repeatedly processed by

the apparatus of FIG. 5. In so doing, the apparatus of
FIG. 5 iteratively performs calculations which are an
approximation of Equation (2). The instructions of

4,018, 121
19

TABLE I are stored in the instruction memory 41 of
FIG. 5. The instructions are accessed in order, from
Instruction 0 to Instruction 77, to complete one pass
through TABLE I. After each pass through TABLE I,
Instructions 0 through 77 are again accessed to com
plete a new pass through TABLE I.
The final calculation for each pass through TABLE I

is set up by latching quantities into the input latches of
multiplier 31. Those quantities are latched during In
structions 74 and 75. The product of those quantities, 10
latched in the multiplier during Instructions 74 and 75,
becomes available on the multiplier 31 output (MO)
approximately five instruction cycles later. Five in
struction cycles later, for any given pass through the
TABLE I instructions, actually occurs in the next pass 15
through TABLE I. In the next pass through TABLE I,
Instruction 4 transfers the output from multiplier 31 to
latches 33. . .

For each pass through TABLEl, a new value is gated
into the output latches 33 in FIG. 5. The digital-to- 20
analog converter 22 converts the data stored in latches
33 to an analog signal which in turn is converted to a
musical sound in speaker 23.
The TABLE I instructions evaluate Equation (2) 5 the modulation indexes are selected as 8 times (Aalt) utilizing an interpolation technique for evaluating the

sine terms in Equation (2). Also the instructions of
TABLE employ scaling factors for the modulation
indexes. The interpolation technique, the scaling fac
tors and the equations actually iterated by the TABLE 3 o
I instructions will now be described. .
Equation (2) includes three sine terms. In order to

accurately evaluate the sine terms with a comparatively
small sine table (256-word sine memory 34 of FIG. 5),
two of the three sine values in Equation (2) are evalu
ated using an interpolation technique. Evaluation of
the third sine term (sinot), however, does not employ . .
the interpolation technique when this term represents
the grit function for producing inharmonic partials
which do not require the greater accuracy achieved by 40
interpolation.
The interpolation involves separately utilizing the

high-order bits and the low-order bits of angles.
As previously indicated, the sine memory 34 in FIG.

5 is addressed by only the eight high-order bits of an
gles from the adder 32. The angles in the apparatus of
FIG. 5, and particularly those output from adder 32,
are defined by 16-bit binary numbers. While the sine
memory 34 only receives the high-order eight bits, the
interpolation technique employs the low-order eight so
bits to form a more accurate evaluation of the sine
term.

In order to do the interpolation, an angle such as the
at modulating frequency is defined by two parts. The
angle omit is equal to the high-order bits of omit (here- 55
inafter hob: ont) plus the low-order bits of out (here
inafter lob: alt). The term sin(ot) is given therefore
by the following Equation (3).

sin(at) = sin(hob: cott - lob: alt) (3) 60

Using the sum of angles formula, Equation (3) is
expanded to the following Equation (4).

sin(hob: at lob: cut) as sin(hob: ot)cos(lob:
- cont) - sin(lob: alt)cos(hob: ott) (4) 65

In Equation (4), (hob: ot) is much, much greater
(256 times greater) than (lob: ont). Under these con

35

20
ditions, the term cos(lob: cont) is approximately equal
to unity and the term sin(lob: cont) is approximately
equal to (lob:aint) itself. Using those approximations,
the value of the sin(out) is given by the following
Equation (5). :

sin(cut) = sin(hob: alt) -- (lob: alt)cos(hob: ,
abat) (5)

By using Equation (5), the accuracy with which the
sine terms are calculated is as if sine memory 34 in FIG.
5 had 4,000 locations rather than just 256 locations. Of
course, the interpolation in accordance with Equation
(5) can be avoided, merely by employing a larger sine
memory 34 or by accepting less accurate results with
an attendant deterioration in quality of the sound pro
duced. . .

In the TABLE evaluation of Equation (2), the mod
ulation indexes I1(t) and I2(t) are divided by a con
stant 8 to form modulation indexes I1 and I2, respec
tively. In order to restore the modulation indexes to
their full values, the modulation indexes I1 and I2 in
TABLE I are each multiplied by a scaling factor which
cancels the factor of 8 division. The scaling factors for

for 1 and as 8 times (Acont) for 12.
In the evaluation of Equation (2), the indexes I1(t)

and 20t) are given by Equations (6) and (7).
1(t) = (1) (8Aot) (6)

I2(r) = (I2) (8Aa) . . (7)

The program of TABLE I treats the amplitude A of
Equation (2) as a function of time so that A becomes
A(t). -.
Using A(t) and the modulation indexes of Equations

(6) and (7), Equation (2) becomes Equation (8) as
follows. . .

e = a(t)sino. + (ii) (8Aoit)sin(oil) + (12)
(8AGlt)sin cost) (8)

Note that the form of Equation (8) is like that of a
differential equation in that it includes the Act and
Aant terms. The incremental evaluation by TABLE I
is like an integration which transforms differential
equations like Equation (8) to equations like Equation

In Equation (8), the overall angle for the first sine
term is designated as X and therefore Equation (8)
becomes the following Equation (9).

e + A(t)sin(X) . (9)

In Equation (9), the approximation like that em.
ployed in Equation (5) is also employed to form the
Equation (10) as follows: . -

e =A(t) sin(hob:X) + (lob:X)cos(hob:X) (10)

In Equation (8) the approximation of Equation (5) is
also employed in connection with evaluating the
sin(ant) term. Utilizing Equation (5) and Equation.
(8), the value for X in Equation (10) is given by the following Equation (11).

x=(ott (8A.) (11) (sinchobot)+(lobot
)cos(hobot)+ (8Aart)(2)sin(hob:o) s ()

21
The program of Table I evaluates Equations (10) and

(11) at many different incremental values of angles and
amplitudes. For each pass through TABLE I, new in
cremental values are added to the angles and ampli
tudes and Equations (10) and (11) are evaluated with
the new values to form an approximation of Equation
(2). For each pass through TABLE I constant incre
mental values Act, Aconit, and Aomat are added to each
of the angles, act, omit, and ont, respectively. In a
similar manner, each of the amplitudes A(t), 1, and I2
are added to time-varying incremental values AA, AI1
and AI2, respectively, for each pass through TABLE I.
After the incremental values are added to the angles
and the amplitudes in Equations (10) and (11), the
addition, multiplication and sine functions of Equations
(10) and (11) are performed as now described in con
nection with the TABLE I program.

In TABLE I, the instructions are numbered in accor
dance with their octal address in the memory 41 of
FIG. 5. The instructions are sequentially fetched from
the memory 41 and executed by the FIG. 5 apparatus.

In Instruction 0, the contents from the pos1 of the
scratch pad memory 26 are gated to the AL1 latch of
the adder 32. The location pos1 in the scratch pad
memory stores the accumulated value for the angle
cont. The old at value from pos1 has added to it an
incremental angle Acomat to form a new comat value
which is stored back into pos1 as hereafter explained.

In Instruction 1, the contents of the fr1 location of
the scratch pad memory 26 are gated to the AL2 latch
of the adder 32. The fr1 location of the scratch pad
memory stores the incremental angle Acomat which is
added to the accumulated value of the modulation
frequency ant by adder 32.

In Instruction 2, the new value of at resulting from
the addition set up in Instruction 0 and 1 at the output
(AO) from adder 32 is stored into pos1 location of the
scratch pad memory 26. Also, the eight high-order bits
of the results of the addition from adder 32 are input to
the sine memory 34 (ST) of FIG. 5. Memory 34 is
therefore addressed to provide a value equal to sin(-
hob:ot) which is the last factor in the last term of
Equation (1 l).
In Instruction 3, the accumulated value of 12 of the

second modulation index is gated from the I2 location
of scratch pad memory 26 to the AL1 latch of adder
32.
In Instruction 4, the output (MO) from the multiplier

31 in FIG. 5 is gated to the output buffer latches 33
through the t1 location of the scratch pad memory 26.
The output (MO) from multiplier 31 is the product
formed by multiplying the quantities stored in the mul
tiplier latches ML1 and ML2 in Instructions 74 and 75
of a prior pass through TABLE I. After completion of
Instruction 77 for any particular pass through TABLE
I, Instruction 0 is again accessed and a new pass
through the TABLE I instructions is carried out. For
each pass through the instructions of TABLE I, the
multiplier output (MO) is stored in latches 33 by In
struction 4. The output stored by Instruction 4 is an
elevation of Equation (10) which was determined by
the previous pass through TABLE I.

In Instruction 5, the output (ST) from the sine mem
ory 34, is stored first in the t1 location of the scratch
pad memory 26 and then in the ML2 input latch
(MPL2) of multiplier 31. The value stored in the ML2
latch is sin(hob:ot) which is the last factor of the last
term of Equation (11).

4,018,121

10

15

20

25

30

35

40

45

50

55

60

65

22
In Instruction 6, the accumulated value of the second

modulation index I2 is gated from the I2 location of
scratch pad memory 26 to the ML1 input latch
(MPL1) of multiplier 31.

In Instruction 7, the AI2 value to be added to the
accumulated value of the second modulating index is
accessed from the (00) locations of the envelope mem
ory 27 and stored in the AL2 latch location of adder
32. Depending upon what has been stored in memory
27, the value of AI2 can change for each pass through
TABLE I. In any case I2 is time varying in accordance
with the present invention.

In Instruction 10, the AI2 value from Instruction 7
and the accumulated value of I2 from Instruction 3
have been added and the sum is stored as a new 2
value into the I2 location of scratch pad memory 26.
The contents of the I2 location are now ready for use
during the next pass through the TABLE I program.

In Instruction 11, the accumulated value of the cont
angle is read out from pos2 of the scratch pad memory
to the AL1 latch of the adder 32.

In Instruction 12, the Aont incremental angle is read
out from the fr2 location of the scratch pad memory to
the AL2 adder latch.
In Instruction 13, the sum from the addition of the

latched values in Instructions 11 and 12 is the new
accumulated value of the angle cont. That new value is
stored back into location pos2 of the scratch pad mem
ory. Also the higher order bits of the sum output from
the adder are utilized to address the sine memory.

In Instruction 14, the product result of the multiplica
tion initiated by the values latched in the multiplier in
Instructions 5 and 6 is available and stored in the t1
location of the scratch pad memory and then into the
ML2 latch of the multiplier 31. The product formed
and stored in the ML2 latch is the righthand two factors
of the last term in Equation (11), that is, (12)sin(-
hob:cont).

In Instruction 18, the 8Aa)nt scaling factor is read
out from the fr108 location of the scratch pad memory
and stored in the multiplier latch ML1. The multiplier
31 commences multiplication of the values latched in
Instructions 14 and 15 and the product result appears
later at the time of Instruction 23.

In Instruction 16, the accumulated value of the cont
angle is transferred to the AL1 adder latch.

In Instruction 17, a constant is read out from the
store 29 of FIG. 5 and stored into the AL2 latch of
adder 32. The constant is a binary representation of an
odd number multiple of Tl2 (e.g., 37tl2) which when
added to a sine angle shifts a sine function to a cosine
function.

In Instruction 20, the sum result of the addition of the
values latched in Instructions 16 and 17 is available and
input to the sine memory 34 of FIG. 5. At the same
time, the previous output from the sine table addressing
in Instruction 13 is stored in the t1 location of the
scratch pad memory. The values stored in ti is sin(-
hob:ont) which is a factor in the second term of the
Equation (11).
In Instruction 21, the accumulated value of the mod

ulation index I1 is read out from the I1 location of the
scratch pad memory and stored in the adder latch AL1.

In Instruction 22, the incremental value AI1 of the
first modulation index is read out from the (10) loca
tions of the envelope memory 27 and stored in the AL2
latch of the adder 32. Depending upon what has been
stored in memory 27, the value of AI1 can change for

4,018,121
23

each pass through TABLE I. In any case, I1 is time
varying.

In Instruction 23, the product result of the multiplica
tion initiated in Instructions 14 and 15 is available and
is stored in the ti2 location of the scratch pad memory
26. The product stored in the ti2 location is the last
term of Equation (11).

In Instruction 24, the output from the sine memory
34, as addressed in the Instruction 20, is transferred
through the t2 location of the scratch pad memory to
the multiplier latch ML2. The value stored in latch
ML2 is cos(hob:cont) which is a factor in the second
term of Equation (11).

In Instruction 25, the lower order eight bits of the
accumulated value of the angle cont are read out from
pos2 of the scratch pad memory and stored in the mul
tiplier latch ML1. Multiplier 31 commences multiplica
tion of the values latched in Instructions 24 and 25 and
the product becomes available during Instruction 34.

In Instruction 26, the addition of the quantities
latched in Instructions 21 and 22 forms a sum which is
the new accumulated value for the modulation index 1
and which is stored in the I1 location of the scratchpad
memory.

In Instruction 27, the accumulated value of the am
plitude envelope A is transferred from the A location of
the scratch pad memory 26 to the adder latch AL.

In Instruction 30, the incremental value AA is read
out from locations (11) of the envelope memory 27
and latched in the adder latch AL2.

In Instruction 31, the new accumulated value A of
the amplitude resulting from addition of the values
latched in Instructions 27 and 30 is stored into the A
location of the scratch pad memory.

In Instruction 32, the contents of the t1 location of
the scratch pad memory are latched into the adder
latch AL2. The quantity in latch AL2 is the one stored
previously into the t1 location in Instruction 20, that is,
sin(hob:cont).

In Instruction 33, no new operation is initiated,
In Instruction 34, the results of the multiplication of

quantities latched in Instructions 24 and 25 is available
and the product is stored through the t1 location of the
scratch pad memory into the adder latch AL1. The
product stored in AL1 is term (lob:cont)cos(hob:cont)
of Equation (11).

In Instruction 35, the sum result of the addition of the
values latched into the adder in Instructions 32 and 34
is stored by way of the scratch pad location ti into the
multiplier latch ML2. The contents of latch ML2 are
sin(hob:conit) - (lob:omit)cos(hob:cont).

In Instruction 36, the accumulated value 1 of the
first modulation index is read out from the I1 location
of the scratch pad memory and stored into the multi
plier ML1 latch. The multiplication commences after
Instruction 36 and the product is available during In
struction 44.

In Instructions 37 through 43, no new operations are
initiated.

In Instruction 44, the product of I1 times the quantity
latched in Instruction 35 is stored into the multiplier
latch ML2. This product is (1) sin(hob:ant) -
(lob:ant)cos(hob:ont)) which is a part of Equation
(11).

In Instruction 45, the scaling factor (8Act) is read
out from the scratch pad location fr208 and stored in
the multiplier latch ML1. With Instruction 45, the mul

5

O

15

20

25

30

35

40

45

50

55

60

65

24
tiplication commences and the product is available in
Instruction 53.

In Instructions 46 through 51, no new operations are
initiated.

In Instruction 52, the contents from the scratch pad
memory location ti2 are stored into the adder latch AL.
Adder latch AL1 contains the quantity which was
stored in the tlocation in Instruction 23, and which is
the last term of Equation (11).

In Instruction 53, the product resulting from multipli
cation of the quantities latched in the multiplier in
Instructions 44 and 45 is available and is transferred
through the t1 scratch pad location to the adder latch
AL2. The quantities now in the adder latch AL2 is the
second term of Equation (11), namely, (8Aant)(1)-
(sin(hob:cont) -- (lob:ont)cos(hob:cont).
In Instruction 54, the quantities latched in Instruc

tions 52 and 53 are added and the sum result is stored
in location ti2 of the scratch pad memory and then
transferred to the AL2 latch of the adder. The quantity
in latch AL2 is the sum of the last two terms of Equa
tion (11).

In Instruction 55, the accumulated value ot for the
carrier frequency angle is read out from pos3 of the
scratch pad memory and stored in the adder latch AL1.

In Instruction 56, the values latched in Instructions
54 and 55 are added and the sum result is stored in the
ti2 location of the scratchpad memory. The quantity in
the location ti2 is now the value X as defined by Equa
tion (11). The high-order bits of X from the adder
output in Instruction 56 are input to address the sine
memory.

In Instruction 57, the value of X from the ti2 scratch
pad memory location is latched into the adder latch
AL1.

In Instruction 60, a constant C1 is accessed from the
binary constant store 29 and stored in adder latch AL2.

In Instruction 61, the output from the sine memory
sin(hob:X), which is a factor in Equation (10), is stored
in the scratch pad memory location til. At the same
time, the output from the adder, which is the sum of the
values latched in Instructions 57 and 60, is input to the
sine memory. The addition of the quantities latched in
Instructions 57 and 60 converts the sine function to a
cosine function, namely, to cos(hob:X).

In Instruction 62, no new operation is initiated.
In Instruction 63, the eight low-order bits of the ti2

location of the scratch pad memory are input to the
multiplier latch ML2 so that ML2 stores (lob:X).

In Instruction 64, the output from the sine table ad
dressed in Instruction 61, is transferred to the t2 loca
tion of the scratch pad memory and then to the multi
plier latch ML1 so that ML1 stores cos(hob:X).

Multiplication commences and the product of the
values latched in Instructions 63 and 64 is available in
Instruction 72.

In Instruction 65, the accumulated value at of the
carrier angle is transferred from the scratch pad mem
ory location pos3 to the adder latch AL2.

In Instruction 66, the incremental angle Aat is read
out from the scratch pad memory location fr3 and
stored in the adder latch AL1.

In Instruction 67, the values latched in Instructions
65 and 66 are added to form the new accumulated sum
act which is stored into the scratch pad memory loca
tion pos3.

In Instructions 70 and 71, no new operations are
initiated.

25
in Instruction 72, the product of the quantities

latched in Instructions 63 and 64 is stored in the t2
location of the scratch pad memory and then into the
adder latch AL1. The quantity in latch AL1 is the right
hand term of Equation (10), namely, (lob:X)cos(-
hob:X).
In Instruction 73, the contents of the t1 scratch pad

memory location are stored in the adder latch AL2.
Latch AL2 at this time stores the quantity sin(hob:X)
which is the lefthand term in Equation (10) and which
was stored in til in Instruction 61.

In Instruction 74, the sum of the quantities latched in
Instructions 72 and 73 is available on the output from
the adder and is stored into scratch pad memory loca
tion ti and from there into the multiplier latch ML2.
The quantity in latch ML2 is sin(hob:X) + (lob:X-
)cos(hob:X)).

In Instruction 75, the amplitude value A from the A
location of the scratch pad memory is latched into the
multiplier latch ML1 and starts the multiplication of
the quantities latched in Instructions 74 and 75. The
multiplication started by Instruction 75 is not complete
until at least five instruction cycles later. When com
plete, the final product A(t)(sin(hob:X) + (lob:X-
)cos(hob:X) is formed which equals the value e of
Equation (10). The final product for one pass through
TABLE becomes available in Instruction 4 of the next
pass through TABLE I.

claim:

1. A method of synthesizing a musical sound com
posed of a plurality of component frequencies and
characterized by a time-varying amplitude envelope
having a time-varying attack portion, a substantially
steadystate portion and a time-varying decay portion,
the steps comprising,
generating a signal a to define a carrier frequency in
the audio range,

generating a signal a) to define a modulation fre
quency in the audio range,

generating a signal (t) to define a time-varying mod
ulation index,

frequency modulating a with a to form a frequency
modulated wave defined by e = Asin (at + I(t) sin
ot) where e defines the instantaneous amplitude
of said wave, A defines the peak amplitude of said
wave, and at + I(t) sin at defines the frequency
spectrum of said wave wherein the frequency spec
trum of said wave changes as a function of the
modulation index I(t) to form a representation of
said sound.

2. A method as in claim 1 including the step of vary
ing (t) as a function of the attack portion of said ampli
tude envelope.
3. In a digital apparatus having storage means for

storing signals including an audio-range carrier fre
quency signal ac, including an audio-range modulation
frequency signal all, including a time-varying modula
tion index signal (t), and including an output ampli
tude signal A; having waveform means for providing
waveform signals as a function of input angles; and
having arithmetic means for arithmetically combining
signals; a method of synthesizing a musical sound com
prising the steps of,
accessing from said storage means, periodically with
time t, the signals al., a, I(t) and A,

transferring said signal () as an input angle to said
waveform means to provide periodically a modula
tion waveform signal,

4,018,121

5

10

15

20

25

30

35

40

50

55

60

65

26
multiplying, in said arithmetic means, said modula
tion waveform signal and a value of said signal I(t)
to form periodically a modulation component sig
nal,

adding, in said arithmetic means, said modulation
component signal and the signal a) to obtain peri
odically an output angle signal,

transferring said output angle signal to said waveform
means to obtain periodically an output waveform
signal,

multiplying, in said arithmetic means, said output
waveform signal by said signal A to provide an
output signal to produce said musical sound.

4. An apparatus for electrically synthesizing musical
sound comprising,

store means for storing signals proportional to ampli
tudes A of an output signal e, for storing signals
proportional to audio-range carrier frequencies oc,
for storing signals proportional to modulation fre
quencies (), for storing signals proportional to
amplitude modulation indexes I(t) where I(t) var

, ies as a function of time t,
accessing means for accessing said signals, periodi

cally with time t, from said store means,
processing means for processing said signals accessed
from said store means to form said output signal
equal to A sin ot + I(t) sin cont),

audio transducer means responsive to said output
signal for providing an audio signal output repre
senting said musical sound.

5. An apparatus for synthesizing musical sound com
posed of a plurality offrequency components and char
acterized by a time-varying amplitude envelope includ
ing a time-varying attack portion, a substantially
steady-state portion and a time-varying decay portion,
said apparatus comprising,
sine wave means for producing signals proportional
to the sine of input angles,

an adder,
a multiplier,
a temporary store,
frequency store means for storing values of audio
range frequency signals including carrier frequency
signals at and modulation frequency signals ot,

amplitude store means for storing amplitude signals
including time-varying amplitude modulation sig
nals (t) and output amplitude signals A,

means for connecting periodically a modulation fre
quency signal cut as an input angle to said sine
wave means to produce signal sin at in said tem
porary store,

means for connecting periodically said signal sin ot
to said multiplier and means for connecting period
ically time-varying values of said signal I(t) to said
multiplier to form periodically a product signal I(t)
sin cut in said temporary store,

means for connecting periodically said signal (t) sin
at to said adder means and means for connecting
periodically a carrier frequency signal at to said
adder to form periodically a sum signal at + I(t)
sin cont) in said temporary store,

means for connecting periodically said signal at +
I(t) sin cont) as an input angle to said sine wave
means whereby said sine wave means periodically
provides a signal sin ot + I(t) sin ot) in said
temporary store,

means for connecting periodically said signal sin ot
+ I(t) sin at) to said multiplier and means for

4,018,121
27

connecting periodically an amplitude value A to
said multiplier to provide periodically an output
signal A sin (at + I(t) sin a t) in said temporary
store,

audio transducer means responsive to said output
signal for providing an audio signal representing
said musical sound.

6. The apparatus of claim 5, wherein said frequency
store means includes means for storing said signals at
and at such that a is an integral multiple of a
whereby said output signal has a frequency spectrum
including only odd harmonics.
7. The apparatus of claim 6 wherein said frequency

store means includes means for storing said signals at
and at such that the ratio alo is equal to 2/1.
8. The apparatus of claim 5 wherein said amplitude

store means includes means for storing said modulation
index signal I(t) directly proportional to said attack
portion of said amplitude envelope and said frequency
store means includes means for storing the signals at
and ot, such that the ratio ala) is equal to all
whereby the frequency spectrum of said output signal
includes both odd and even harmonics for producing
musical sound with the timbrel quality of brass instru
ments.

10

20

25

30

35

40

45

50

55

60

65

28
9. The apparatus of claim 8 where said means for

storing the signals at and at stores values such that
aela) is equal to 1/l.

10. The apparatus of claim 5 in which said frequency
store means includes means for storing cut and ont
such that the ratio of ae?a) is equal to an irrational
number whereby the frequency spectrum of said output
signal includes inharmonic frequencies.

11. The apparatus of claim 5 wherein said frequency
store means includes means for storing the frequency
signals at equals to act - act where act and (02 are
unequal frequencies.

12. The apparatus of claim 11 where said frequency
store means store act, at and a such that the ratio
al?o is equal to 7/1 and such that the ratio allon is
equal to 1/1.

13. The apparatus of claim 5 wherein said frequency
store means includes means for storing said frequency
signals at as first frequency signals out and second
frequency signals at, wherein said amplitude store
means includes means for storing said modulation sig
nals I(t) as first amplitude modulation signals (t) and
as second amplitude modulation signals I,(t), whereby
said output signal is Asin Iot + I(t) sin out +(t) sin
Cong

14. The apparatus of claim 5 wherein said amplitude
store means includes means for storing said output
amplitude signals A as a function of said time-varying
amplitude envelope.

:f k . . k is

