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57) ABSTRACT 
Musical sounds are synthesized by means of frequency 
modulation with the carrier and modulating frequen 
cies being in the audio range and the modulating index 
being related to a function to control the bandwidth 
and evolution in time of the partial frequencies of syn 
thesized sound. 
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METHOD OF SYNTHESIZING A MUSICAL souND 
CROSS REFERENCE TO RELATED APPLICATION 
This application is a continuation-in-part of applica 

tion Ser. No. 454,790, filed Mar. 26, 1974, and now 
abandoned. : 

BACKGROUND OF THE INVENTION 
The present invention is directed to a method of 

synthesizing a musical sound and more specifically to a 
technique utilizing frequency modulation to provide 
for the temporal evolution of the spectral components 
of a musical sound. 
Several types of musical synthesizers are well known 

in the art but thus far the synthesis of natural sounds 
has been elusive. In a typical type of analog synthesizer, 
a voltage controlled oscillator is driven by a waveform 
of the desired shape and frequency and then filtered 
and passed through an attenuator to provide the proper 
envelope to simulate a desired musical or natural 
sound. With the foregoing analog synthesizer which is 
of the subtractive type, there is, of course, no evolution 
in time of the various spectral components or partial 
frequencies of the final sound. 
Synthesizers utilizing digital techniques have realized 

that to create a natural sound individual partial fre 
quencies must be generated and combined. One type of 
organ is based on this principle where the several par 
tial frequencies are added together and then given a 
common envelope function. The combinations of such 
frequencies are based, of course, on the principles 
established in Fourier analysis. 
Yet another digital synthesis technique has been 

suggested by Jean-Claude Risset and Max V. Mathews, 
"Analysis of Musical Instrument Tones," Physics To 
day, vol. 22, no. 2, pp. 23-30 (1969). Rissetestablished 
that the character of the temporal evolution or the 
evolution in time of the spectral components of a sound 
is of critical importance in the determination of timbre. 
In other words, Risset would suggest that to simulate a 
natural sound the amplitude of each harmonic should 
be individually controlled as a function of time. In 
addition, Rissetsuggested, at least for the production of 
the trumpet tones, that the attack envelope, that is, the 
initial envelope characteristic for the trumpet tone, has 
a distinctive characteristic in that during the attack and 
also decay portion of the sound, the energy of the vari 
ous frequency components evolve in complicated ways. 
To implement the Risset theory with known tech 

niques requires a complex digital computer which indi 
vidually simulates each frequency component. Thus, at 
the present time a real time music synthesizer of the 
digital type is not commercially feasible. 
The variation of bandwidth with modulation index 

has been illustrated in an article by Murlan S. Corring 
ton, "Variation of Bandwidth With Modulation Index 
in Frequency Modulation," Selected Papers on Fre 
quency Modulation, edited by Klapper (Dover Publica 
tions, 1970). However, this is merely a theoretical 
study of frequency modulation. 
OBJECTS AND SUMMARY OF THE INVENTION 
It is, therefore, an object of the present invention to 

provide an improved method of synthesizing a musical 
sound composed of a plurality of partial frequencies in 
which the amplitude of each frequency individually 
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2 
varies as a function of time in accordance the timbral 
qualities of the musical sound to be synthesized. 

In accordance with the above object, the method 
comprises the steps of selecting carrier, co, and modu 
lation, on, frequencies in the audio range. The coe and 
a frequencies are modulated in accordance with 

e = At oth f(t) sin at 

where e is the instantaneous amplitude of the frequency 
modulated wave, A is the peak amplitude and I(t) is the 
modulation index. I(t) is selected as a predetermined 
function to control the bandwidth of the wave and its 
evolution in time. 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a dynamic FM spectrum useful in under 

standing the invention; 
FIG. 2 is a circuit useful for practicing the present 

invention as represented in MUSICV notation; 
FIGS. 3 and 4 are dynamic FM spectra useful in 

understanding the invention; and 
FIGS. 5 through 18 are block diagrams for a digital 

FM synthesizer embodied in the present invention. 
DETALED DESCRIPTION OF THE PREFERRED 

EMBODIMENTS 
In general the present invention provides a frequency 

modulation technique for producing a complex spec 
tra; that is, one which has a spectral evolution which 
evolves in time with relative simplicity. In other words, 
the frequency modulation technique of the present 
invention provides for specific control of the individual 
or partial frequencies making up a total or natural 
musical sound. 

Specifically, this is accomplished by selecting carrier 
and modulation frequencies in the audio range and 
frequency modulating the carrier a with the modula 
tion frequency, an in accordance with 

e re. A cut (t) sin of (1) 

where e is the instantaneous amplitude of the frequency 
modulated wave, A is the peak amplitude and I(t) the 
modulation index. Moreover, the modulation index is 
selected as a predetermined function to control the 
bandwidth of the wave and its evolution in time. 
FIG. 1 illustrates the foregoing for the production of 

a brass-like sound. The dynamic spectra of a typical 
brass tone is shown as functions of frequency, time and 
amplitude in the Attack mode to steady state mode and 
into a Decay mode. The curve 10 labeled amplitude 
function is a characteristic envelope function of the 
overall tone or musical sound and varies the factor A in 
equation (1). Curve 11 labeled index function shows 
the variation of I(t) from an initial zero point ID to the 
final steady state point ID. The spectral evolution 
curves of FIG. 1 are based on carrier and modulation 
frequencies equal to one another. That is, they have 
relative values of 1.0 as indicated in the drawing of 
FIG. 1 with ID equal to zero and ID, equal to five. The 
overall envelope of amplitude function 10 in essence 
varies the peak amplitude A of equation (1). Thus, the 
intensity of sound increases from a zero level as shown 
by curve 10 to a maximum at steady state and then 
decays in a somewhat linear manner. 

Risset demonstrated in his analysis of trumpetitones a 
fundamental characteristic of this class of timbres; the 
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amount of energy in the spectrum is distributed over an 
increasing band in approximate proportion to the in 
crease in intensity. This is illustrated in FIG. 1 where 
initially only the carrier and lower harmonics such as 
the second and third have any appreciable amplitude 
and thereafter during the state state designated SS 
the higher harmonics are increased in intensity. Other 
characteristics of a brass tone are that frequencies in 
the spectrum are in harmonic series, both odd and even 
numbered harmonics are sometimes present, and as 
stated by Risset but not specifically illustrated in FIG. 
1, the rise time of the amplitude or envelope function is 
rapid for a typical attack and may "overshoot' the 
steady state. Moreover, a comparison of the curves 10 
and 11, illustrates that the modulation index varies in 
direct proportion to the amplitude of a modulated car 
rier wave. 
The musical brass-like sound illustrated in FIG. 1 is 

preferably achieved by use of a special purpose com 
puter or digital FM synthesizer as will be described 
below. However, for demonstration purposes as to the 
effectiveness of the concept of the present invention a 
typical minicomputer can be programmed with a FOR 
TRAN IV program written in MUSIC V. MUSIC V is a 
well-known program as set out in a look by Max V. 
Mathews, The Technology of Computer Music (The 
MIT Press, Boston, 1969). The difficulty with using the 
MUSIC V program is that it is not a real-time on-line 
system. 

In general, the MUSIC V sound synthesis program is 
a program which generates samples of a sound wave 
which are then stored in a memory device as computed. 
Digital to analog conversion and filtering then allows 
an audio system to regenerate the sound. The program 
is designed so that computation of samples is done by 
program blocks called unit generators abbreviated 
U.G. A typical unit generator is an oscillator which has 
two inputs, an output, and a stored wave shape func 
tion. The first input specifies the amplitude of the out 
put, the second input the frequency of the output, and 
the function determines the shape of the output. The 
value of an input can either be specified by the user or 
can be the output of another unit generator, thereby 
allowing multi-level operations on waveforms. A col 
lection of interconnected unit generators is called an 
instrument which is supplied data through a set of pa 
rameters P, through Ps 
Referring to FIG. 2, this is a suitable instrument for 

producing a FM circuit which generates a dynamic 
spectra in accordance with the present invention. A 
unit generator 4 produces an amplitude envelope simi 
lar to envelope 10 of FIG. 1 and a unit generator 5 a 
modulation index envelope similar to envelope 11 of 
FIG. 1. The parameters for the instruments have the 
following functions. 
P = Begin time of instrument 
P = Instrument number 
P = Duration of the "note' 
P = Amplitude of the output wave 
P = Carrier frequency 
P = Modulating frequency 
P = Initial modulation index ID 
P = Final modulation index ID. 
The parameter values for brass-like tones such as 

illustrated in FIG. 1 would be the following: 
P = 0.6 
P = 1000 (amplitude scaling) 
P = 440 Hz 

5 

O 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
Ps = 440 Hz (ratio of cfm = 1/1) 
P = 0 
P = 5. 
A standard MUSIC V program is suitable in many 

instances but depending on the musical sound being 
generated the instantaneous frequency of the modu 
lated carrier at times become negative; in other words, 
the final waveform would have a phase angle which 
decreases with time. This condition occurs when either 
the ratio of the carrier to the modulating frequency is 
very small or the modulation index is very large. Thus, 
the unit generator U.G. 3 of FIG. 2 must be able to 
produce a wave which results from taking the sine of an 
angle which decreases as well as increases with time. 
The change in code to the oscillator in MUSIC V to 
allow for decreasing angle is: 
for 
290 IF(SUM-XNFUN).288, 287, 287 
287 SUM=SUM-XNFUN 

substitute : 

290 IF(SUM.GW.XNFUN) GO TO 287 
IF(SUM.LT.0.0) GO TO 289 

and for 
GO TO293 
292 J6-L1-3-1. 

substitute 
GO TO 293 
287 SUM-SUM-XNFUN 
GO TO 288 
289 SUM=SUM+XNFUN 
GO TO 288 

FIGS. 3 and 4 illustrate respectively bell-like and 
clarinet-like tones. Referring to FIG. 3, the bell-like 
timbre of the family of percussive sounds is developed 
around the following two premises: 

1. The spectral components are not usually in the 
harmonic series, and 

2. The evolution of the spectrum is from the complex 
to the simple. The amplitude or envelope function of 
the bell-like sound illustrated has an exponential decay 
which, for example, may terminate at a time of 15 
seconds. The index function is directly proportional to 
the amplitude envelope. From a MUSICV standpoint, 
the parameters to produce a bell-like sound can be the 
following: 
Prs 15 seconds 
P = 1000 
P = 200 Hz 
P = 280 Hz 
P = 0 
P = 10. 
More importantly, however, the carrier and modula 

tion frequencies are related to one another by an irra 
tional number or a number ratio which is not an inte 
ger. As illustrated in FIG. 3, this causes inharmonic 
spectra where the components are not in a relation of 
simple ratios. However, such irrational numbers should 
be small enough to maintain the density of partial tones 
to produce, for example, the bell-like sound of FIG. 3. 
The irrational ratio of colon = 11 V2, for example, 

which produces a nonperiodic waveform, and where 
the bandwidth is controlled by the index function in 
time, can produce bell tones and other percussive tones 
as shown in FIG. 3. 
The same technique can also be used to produce 

secondary features of quasi-periodic tones, such as the 
"scratchiness" during the attack of a violin tone. This 
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will be termed a "grit function' hereinafter. In this 
case, this index or grit function would only be non-zero 
during the attack interval of, for example, 0.025 sec 
onds after which the spectrum would be composed 
solely of the rationally related colon ratios. This would 
demand two modulating oscillators and one carrier 
oscillator, where the first modulating frequency is re 
lated to the carrier, olon = 1/1, and the second by 
11 W2= a?on. In such as case, the FM modulation of 
the present invention would occur in accordance with 
the following equation: 

e - Ali (a t + I(t) sin on t + 1, (t) sin at (2) 

where I(t) and an are equivalent to I(t) and cont of 
equation (l) and on is an additional modulating fre 
quency where colon is equal to an irrational number. 
Thus, the first index (t) would have an envelope 
shape similar to the amplitude envelope of the brass 
like sound of FIG. 2 but in addition the grit function 
would be added and would be the predetermined func 
tion of the second index I,(t) and having a duration of 
less than 200 milliseconds. Thus, for a violin sound 
along with the grit function the carrier and first modu 
lation frequency would be related by a function 1/1 = 
a?on. The first index function would be inversely 
proporational to the rising amplitude envelope. 
From the foregoing it is apparent that the ratio of the 

carrier and modulating frequencies determines the 
position of the components in the spectrum. The modu 
lation index itself determines the number of compo 
nents which will have a significant amplitude. With 
regard to simple frequency ratios, N/N, the following 
generalizations can be made: 

1. The carrier is always the Nth harmonic in the 
series. 

2. If N = 1, the spectrum contains all harmonics and 
the fundamental is at the modulating frequency, e.g., 
1/1,2/1. 
3. When N is an even number, the spectrum contains 

only odd numbered harmonics, e.g., 2, 4,3/2,%, 5/2. 
4. If N = 3, every third harmonic is missing from the 

series, e.g., 4, 4, 4/3, 5/3. 
FIG. 4 illustrates a clarinet-like timbral sound where 

the index function curve is inversely proportional to the 
leading edge of amplitude function. In addition colon = 
%. This, as stated above in rule (3) produces only odd 
harmonics which is a well known characteristic of the 
clarinet sound. 
With respect to the grit function (t) this is of a very 

short duration compared to the period of the carrier 
frequency, (). 
The special richness which may be produced by the 

technique of the present invention lies in the fact that 
there are ratios of the carrier and modulating frequen 
cies and values of the index which will produce side 
band components that fall in the negative frequency 
domain of the spectrum. These negative components 
reflect around 0 Hz and "mix' with the components in 
the positive domain. The variety of frequency relations 
which result from this mix is vast and includes both 
harmonic and inharmonic spectra. 
A simple but very useful example of reflected side 

frequencies occurs if the ratio of the carrier to modu 
lating frequencies is unity. For the values 
a = 100 Hz 
a = 100 Hz 
= 4 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
The component at 0 Hz represents a constant in the 

wave. The remaining lower-side frequencies are re 
flected into the positive frequency domain with a 
change of sign (inversion of phase) and add algebra 
ically to the components which are already there. For 
example the second lower-side frequency will add to 
the carrier with like signs, therefore increasing the 
energy at 100 Hz, while the third lower-side frequency 
will add to the first upper-side frequency with unlike 
signs, decreasing the energy at 200 Hz. The foregoing 
as well as other facets of the present invention is dis 
cussed in an article by the present inventor in the Jour 
nal of the Audio Engineering Society, September, 1973, 
entitled "The Synthesis of Complex Audio Spectra by 
Means of Frequency Modulation.” 
A formant peak may be accomplished by the FM 

modulation technique of the present invention in ac 
cordance with 

e F Ai (cuct act t (t) sin cont) (3) 

where oc -- oc are two carrier frequencies having 
ratios with on. Such ratios typically being cofon = 7/1 
and oc1a)n = 1/1 and the 7/1 ratio placing the formant 
peak at the seventh harmonic. 
From the foregoing it is apparent that the present 

invention provides a simple technique for providing for 
the timbral evolution for the various frequencies or 
partials of a complex musical sound. Moreover, the 
present invention realizes such timbal evolution espe 
cially in the attack portion of the sound often provides 
the "signature' of the sound. In other words, this is 
what the listener judges as the lively quality of the 
sound. In contrast, it is the fixed proportion spectrum 
of most synthesized sounds that readily imparts to the 
listener the electronic cue and lifeless quality. The FM 
synthesis technique of the present invention is far sim 
pler than additive or subtractive synthesis techniques 
which can produce similar spectra. It is believed that 
the FM technique of the present invention duplicates 
natural sounds more cost effectively than if a very com 
plex computer were utilized to control the amplitudes 
of individual partial frequencies in a very precise man 
ner. In other words, although the control of the present 
invention is seemingly limited in that precise amplitude 
control of each partial frequency cannot be varied fully 
as desired, this proves to be no limitation as far as the 
subjective musical impression is concerned. 

Finally, the present invention may be capable of 
generating "musical sounds' which have not hereto 
fore been heard by a human being. Thus, the use of the 
term "musical sound' is not meant to be limited to the 
standard musical sounds now known. 
From the foregoing, it is apparent that the frequency 

modulation technique of the present invention is quite 
different from the addition of a typical vibrato or peri 
odic variation of a frequency around some average 
which is added to a musical sound. In vibrato, the mod 
ulating frequency is merely a few cycles per second and 
thus the ear has little difficulty tracking the instanta 
neous frequency of the carrier. However, where the 
carriers and modulating frequencies are either equal or 
of approximately the same order of magnitude, the ear 
can no longer track the instantaneous change in fre 
quency as a sweep frequency but rather perceives a 
complex spectrum. 
Although the MUSIC V program will produce musi 

cal sounds in accordance with the FM techniques of 
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this invention, if real-time operation is desired, a digital 
FM synthesizer should be used. 
FIG. 5 illustrates a micro-programmed device which 

has a digital output on line 21 which is converted to 
analog output by digital to analog converter 22 to pro 
duce the desired musical sound at loudspeaker 23. The 
device has as its inputs a 3 bit binary number represent 
ing the instrument or rather a selection of different 
timbres or tone quality, a seven bit binary number 
representing the desired frequency of the musical note 
and a key bit which initiates the generation of the musi 
cal sound. The synthesizer will then generate succes 
sive 16 bit binary numbers on its output 21 which rep 
resents the waveform at 50 microsecond intervals. If 
the device is to be used as the sound generating part of, 
for example, an organ all that is required is to feed the 
number of the key that is being depressed as the fre 
quency information and, of course, the actual pressing 
of the key. All of the blocks of FIG. 5 are shown in 
detail in subsequent drawings and can be made up with 
standard off-the-shelf components. Each block in 
FIGS. 6-18 is labeled with a standard type number 
which may be found in the TTL Data Book, Number 
CC-411, Texas Instruments, Incorporated and INTEL 
Data Catalog, October; 1973, and ordered from Texas 
Instruments Components, Group, Market Communica 
tions Depart., P.O. Box 5012, M.S. 84, Dallas, Texas 
75222 and Intel Corporation, 3065 Bowers Avenue, 
Santa Clara, California 9505l. 

Referring now specifically to FIG. 5, there are illus 
trated both sources of information and sinks. All data is 
communicated over the data bus 24. The sources of 
information are a scratch pad memory 26, envelope 
memory 27, initialization memory 28 and a binary 
constant 29. The sinks are a multiplier 31, adder 32 and 
the output latch for register 33. Two other sinks are not 
directly connected to the data bus are the sine memory 
34 which is a read only memory and in addition, 
scratch pad memory 26 which can also accept data. 
Information in the search pad memory 26 is inputed by 
a four way selector 36 and a frequency memory 37. 
Envelope counter memory 38 which is driven by an 
eight bit binary counter 39 provides a segmented enve 
lope as will be discussed below. 

Lastly, the actual program for the digital synthesizer 
is provided by an instruction memory 41 and its asso 
ciated latch 42. Such memory is shown in greater detail 
in FIG. 6 and consists of four 74186 read only memo 
ries that can hold 64 eight bit words each. Thus, a 
combination of two of the memories produces a stan 
dard 16 bit instruction word labeled 10 through I15. 
The memory pair 41a is for the 64 word running pro 
gram and the pair 41b for the start up program. The 
start up program is initiated by a true signal on the 
active input. After this 64 word program is run through 
once, the running program then cycles. Each cycle is 
50 microseconds in which time the running program 
cycles through all 64 words and then starts at the begin 
ning again. This 50 microseconds is also the sample 
time; that is a new sample is delivered to the D/A con 
verter 22 (FIG. 5) for every sample time. Memories 
41a, b are addressed by the program counter which 
consists of blocks 43 and 44 which has as outputs PC0 
through PC5. These signals address the instruction 
memories at the inputs indicated advancing the instruc 
tion and then wrapping around at 63 back to zero. The 
latches 42 store on each cycle the output of the read 
only memories 41; that is, the 16 bits of the instruction 
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8 
word I0-115 are stored into the latches. The outputs of 
the latches perform the following functions. The MA0, 
1,2,3, outputs serve as a memory address for the 
scratchpad memory 26 (FIG. 5). WS0, 1 controls the 
selector 36 which controls what is written into the 
scratchpad memory 26. In general the scratchpad 
memory 26 can be written into from four sources. 
Namely, the multiplier 31, adder 32, sine memory 34 
and frequency memory 37. This occurs at initialize 
time discussed in conjunction with FIG. 11. 
Referring now again to FIG. 6, the outputs LS0, 1, 

and 2 form a three bit binary number which decodes to 
one of either latch selects which are for the purpose of 
directing information to the system. Specifically, one of 
its functions is to specify which data sink will latch the 
data that is on the bus. RE0, 1, 2 form a three bit binary 
number which selects a data source to be gated onto 
the bus. LOB is for the purpose of gating the low order 
eight bits of the scratchpad memory onto the bus. The 
purpose of LOB is for sine wave interpolation where 
the 16 bit angle of which the sine is being taken is 
divided into a high order eight bits and low order eight 
bits. Since the sine memory 34 itself only accepts the 
high order eight bits, the interpolation is done on the 
low order eight bits and the LOB signal essentially turns 
off the high order bits and sets them to zero when it 
goes onto the bus. ISEL and SSEL select which enve 
lope function is of interest. They are finally directed to 
the envelope memory 27 of FIG. 5. They can select 
either an amplitude function or a modulation index 
function or the second modulation index function. The 
WE signal in this instruction word from the latches 42 
is write enable and enables writing into the scratchpad 
memory 26. Lastly, WS0, 1, provide the scratchpad 
memory write data and selects one of four inputs to the 
scratchpad memory which are multiplier, adder, sine 
table and frequency memory, 
The remaining gating shown in FIG. 6 is AND gate 

40, OR gating 46, and D flip-flop 47 which serve the 
purpose of shutting off initializing after start up. During 
start up the system is in INIT state. This state is com 
pleted by an Init Done signal (which is an input to OR 
gate 46) which means that the program counter has 
overflowed and the initialization program is completed. 
In general in operation if, for example, an update on 
the amplitude of the output sinusoid is desired, this is 
accomplished by storing the current value of the ampli 
tude of the sinusoid and scratchpad memory 26 and 
then reading out of the envelope memory 27 the incre 
ment to that value. Thus, on one instruction cycle the 
scratchpad memory will be gated onto the data bus by 
the adder latches of adder 32 and the adder will latch 
onto the current amplitude position. On the next in 
struction cycle the envelope memory 27 is gated onto 
the data bus and the other adder latch activated. A few 
microseconds later, the sum appears at the adder out 
put, AO0-15. 
FIG. 7 provides control logic for the latch instruction 

outputs of FIG. 6. Specifically the latch select bits LS0, 
1, 2 are coupled to a decoder 48 which produces when 
enabled a signal on one of eight different lines. These 
include the multiplier latch signals MPL1, 2 and adder 
latch signals AL1, 2. Also, sine table latch, ST and a 
signal EL which is used as a control signal to cycle the 
envelope memory onto the next segment; this occurs 
once every 63 instructions. This is done because of a 
lack of sufficient bits in the instruction word. The last 
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output "load output buffer" causes the output latch 33 
(FIG. 1) to store words from the data bus. 
Control bits RE0, 1, 2 to decoder 49 determine 

which of four data sources are gated onto the data bus. 
Output SP gates the scratchpad memory onto the bus; 
IM gates the initialization memory 28 onto the bus. 
Such memory contains data as for example, the factor 
by which the fundamental frequency is multiplied to 
produce either the modulating frequency or carrier 
frequency. As is apparent from the foregoing examples, 
this is generally an small integer factor of 1,2,3. This 
is, of course, done at the initialization time. The con 
stant C1 is % which is the difference between a sine and 
cosine angle so that a cosine angle may be processed as 
a sine angle during sine table table interpolation. C2 is 
unused. ENV gates the envelope memory 27 onto the 
bus which, of course, contains the increment that is to 
be added to the current value of either the modulation 
index or amplitude envelope for the next step. 
Memory 48 is enabled by a bus enable input which is 

produced by the gate 51 having as inputs load, CLR2 
and latch. Decoder 49 is enabled by single I Load. Both 
load and latch are generated by the four coupled 

flip-flops 52 which are fired in order; that is, only one 
of them is true at any one time. Flip-flops 52 count the 
master clock (MRCLK) and each time the master 
clock goes true the stored bit advances to the next 
flip-flop. The first flip-flop increments the program 
counter with the output PCINC and in turn the pro 
gram counter causes data to be produced from the read 
only instruction memories 41. At the next clock pulse I 
Load will be produced which latches the instruction 
word and gates the data source onto the data. The next 
clock cycle is wait and on the last clock cycle LATCH 
will come true and will cause whatever data is present 
on the data but to be latched into one of the data sinks. 
This completes an instruction cycle at which time the 
initial flip-flop causes the program counter to incre 
ment another step. Thus, in operation in general at I 
load the instruction word is produced and control sig 
nals propagate around the system, the data getting 
gated onto the bus and then latched off the bus to 
perform whatever function is desired as, for example, 
adding or multiplying 
The last two functions illustrated in FIG. 7 include 

the production of the master clock which is produced 
by the crystal clock 53. The clock runs at a rate such 
that an instruction word is executed in about 800 nano 
seconds which thus allows 64 instruction words in 50 
microseconds, Finally, OR and AND gates provide a 
clear pulse so that when power is supplied to the device 
all registers are reset. 
The major states of the device from a system stand 

point are Idle, Init, Run, and Decay. In the ldle state 
there is no note playing and no key is depressed. When 
a key is depressed the device goes into Inite state and it 
runs the 64 word initialize program in the instruction 
memory. When that program is finished, it automati 
cally goes into Run state and it stays in Run state until 
the key is lifted. When the key is lifted it goes into 
Decay state. How long it stays in Decay state is deter 
mined by the Decay envelope in the envelope memory. 
When it completes the Decay envelope, then the device 
goes back into the Idle state. There are also some sub 
states associated with envelope control. For instance, 
the Run state is divided into two sub-states called At 
tack and Steady State and Decay major state is called a 
run-down state in the envelope control. This renaming 
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10 
is to prevent a timing problem. The timing problem is if 
the key stroke is very very short such that the device is 
still in the Attack sub-state but the key is lifted the 
envelope control keeps it in Attack state until the at 
tack is finished and then goes into Decay state; so it will 
never abort the attack because of a very short key 
stroke. 
The foregoing is illustrated in the state diagram of 

FIG. 8. Changing states is done on the AND of the 
previous state and the state changing condition and the 
clock. For instance, to get out of idle state, there must 
be present the AND (gate 56) of Idle, the key has 
become depressed, and master clock (MRCLK); gate 
57 goes into the Init state. To get out of Init state, Init 
Done must come up to activate gate 58. Init Done 
(FIG. 6) comes true when the program counter 44 
reaches 63; that is, the initialize program is finished. 
Run state is gotten out of by being in Run state and the 
key being raised; that is, "Not" Key comes true and the 
master clock closes gate 59 to go into Decay. Finally 
Idle state is returned to by being in a Run Down sub 
state as Envelope Done comes up, Decay is true and 
master clock. Thus, if the device is in Decay mode and 
the envelope has cycled all the way through into Run 
Down mode and is done, signified by Envelope Done, 
the idle is returned to. 
FIG. 9 contains the blocks envelope memory 27 and 

envelope counter memory 38 of FIG. 5. These are all 
INTEL (trademark) model 1302 (see INTEL Data 
Catalog) read only memories. The envelope memory 
consists of two 1302s which provide 256 different 16 
bit words. These 16 bit words as they come out of the 
memory are labeled Env 0, 1, through 15. They are the 
increments to the current position, e.g., the attach 
amplitude or the modulation index or the second mod 
ulation index. The envelope words are the amount that 
is added to those amplitudes at each sample cycle; that 
is, at one loop of the instruction memory; (50 micro 
seconds). The envelope counter memory 38 specifies 
the number of sample cycles where the above incre 
ment is true; the process is a piece wise linear approxi 
mation and the counter memory specifies the number 
of samples for each piece of the piece wise linear seg 
ment. The number ENV 0 through ENV 15 is actually 
related to the slope of that piece wise linear segment. 
The counter memory generates an eight bit count CNT 
0 through 7. 

All of the above is addressed by various inputs. There 
is instrument number which is a three bit number INS 
0, 1 and 2 where different Attack and Decay envelopes 
are selected for different instruments. With the seg 
ment number SEG 0, 1, an Attack can be synthesized 
on any instrument with up to four segments and the 
Decay with up to four segments. Also gated is the signal 
"attack" which selects a different set of piece-wise 
linear segments for the attack compared to the decay. 
The signal Init is ORed with Attack to ensure that the 
data will be ready as soon as the Init state is completed 
and Attack is begun. The other two bits in the eight bit 
address are SSEL and ISEL from the instruction word; 
they select the desired envelope which may be the 
Attack envelope, the first modulation index envelope 
or the second modulation index envelope. 

All the other gates on FIG. 9 gate the envelopes onto 
the bus. They are tristate buffers which have three 
states; true, false and not enabled. Data is gated onto 
the bus with the OR of two signals; ENV which is from 
the read enable bits of the instruction word, that is 
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decoder 49 (FIG. 7) and CNTEN or count enable. 
Count enable is true if the device is in Attack and not 
in Decay; that is, count enable specifies that the ampli 
tudes are changing. Otherwise the device is in steady 
state and the amplitudes are not changing and there 
fore zeros are gated onto the bus. Gating zeros onto the 
bus is illustrated in FIG. 7; gating the envelope incre 
ment itself onto the bus as shown in FIG. 9. 
FIG. 10 illustrates envelope control and contains two 

sets of counters. The first set of counters 61 consists of 
three counters which take in the count from the enve 
lope counter memory which is an eight bit count 0-7 
and counts the number of EL signals. The EL signal is 
a decoded latch select and there is one in every sample 
cycle; that is, one instruction of the 63 instructions 
turns the EL bit on. Thus, counters 61 essentially count 
samples. The number that comes out of the envelope 
counter memory is the negative or the two's comple 
ment of the number of samples to count until the seg 
ment is completed. Counters 61 are enabled by 
CNTEN, count enable, and they only count if in an 
attack mode or run-down mode which is physically the 
Attack or the Decay of the signal. When counters 61 
overflow, CNTOV goes true, counter overflow, and 
allows the other counter 62 in FIG. 10 to count. 
Counter 62 counts which of the four segments of the 
piece-wise linear approximation is being processed. 
That is, at initialize time counter 62 is cleared and its 
output is Seg 0 and Seg 1 and this goes directly into the 
address of the envelope memory and the envelope 
counter memory. In operation, some number of sam 
ples is counted and then CNTOV goes true and counts 
to the next segment. A new count is reloaded and the 
number of samples in that segment is counted. When 
four segments have been counted through, envelope 
done comes true. That will cause, if in an Attack mode, 
a move to Steady State; in Run Down it will cause a 
return to Idle. 
There are a few other input signals. For instance, 

load enable, LDENB, enables the loading of the sample 
counter 61 by the envelope counter memory 27 and is 
generated by the OR (gate 63) of load and CNTOV 
when the counter overflows; CNTOV has gone true 
and a new count is ready to be accepted. However, 
upon going into Attack mode the count has not over 
flowed and some way of getting it started is needed. 
Thus, when attack first goes true, Load is set. 
Count enable, CNTEN is generated by the OR of 

Attack and RUN Down (gate 64). This is essentially 
true during the Attack Decay portions of the waveform 
but it is not identical to the Decay major state. Specifi 
cally, four flip-flop 66 form a four-flop. Attack is gener 
ated by going into the Run major state, then Attack 
goes true and it also brings Load true. But Load only 
stays true for one sample cycle whereas, Attack will 
stay true until Envelope Done comes up; that is, until 
all four segments have been counted through. Thereaf 
ter, Steady State mode will be stayed in until essentially 
going into Decay major state; that is until the key is 
lifted; then the device goes into Run Down mode. R 
load is generated like Load; that is, it stays on momen 
tarily whereas Run Down stays on until Envelope Done 
comes true. If the key is tapped very very shortly, the 
major state will change to Decay but the device will 
stay in Attack mode until Envelope Done comes true; 
then it will go into Steady State for just an instant and 
then flip into Run Down mode. 

10 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
FIG. 11 is a more detailed diagram of blocks fre 

quency memory 37 and initialization memory 28 of 
FIG. 5. The frequency memory is coupled directly to 
the selector 36 for the scratchpad memory 26 and the 
initialization memory 28 can be gated onto the bus. 
Since the initialization memory is only 8 eights, only 
the higher order 8bits is gated onto the bus and the low 
order 8 bits are gated as zeros as illustrated in FIG. 12. 

Referring in detail to FIG. 11, inputed to the fre 
quency memory is a 7 bit number, FREQ 0 through 6. 
In actuality, this is the number of a key starting at A 
natural 27.5 Hertz and every number specifies a half 
step from that low A, that is, 128 frequency numbers 
can specify a seven octave range above low low A. This 
is transformed via the frequency memory into an actual 
frequency number. Thus the frequency number is the 
amount that is added to the current position of the sine 
table to get the next position in the sine table. That is, 
this is the incremental angle of which the sine is taken. 
Memory outputs FTO through FT15 are coupled into 
the selector 36 (FIG. 5) which can be selected by WS0 
and 1 in the instruction word which is the write select 
into the scratchpad memory. 
The initialization memory is addressed by the three 

bits of the instruction and also by a four bit counter; 
that is, up to 16 initialization constants can be supplied 
and every time the program asks for a new initialization 
constant with the IM signals (decoded from RE0 
through 2) the read enable, which gates data onto the 
bus, will count counter 67 and thus go to a new initial 
ization constant. The program essentially has to know 
what these constants are and what order they are stored 

The kind of constants that are stored in the initializa 
tion memory are the following: for most versatility, the 
frequency of the carrier sinusoid and the modulating 
sinusoid are not necessarily the same frequency as the 
fundamental frequency. The difference is that they will 
in general be small integral multiples of the fundamen 
tal frequency. Those integral multiples 0, 1, 2 or 3 or so 
are stored in the initialized memory to be later read 
out. The other information that is stored in the initial 
ized memory are the beginning amplitudes. For exam 
ple, some amplitude envelopes start at a non-zero num 
ber like the bell which starts at a loud point and decay 
down. However, for most instruments, those numbers 
are 0. These are stored in a specific order; i.e., the 
multiplier for the second modulating frequency, the 
multiplier for the first modulating frequency, and the 
multiplier for the carrier frequency. Gated out of the 
initialization memory onto the data bus (IM0-7) are 
the beginning positions for the angle of which the sine 
is taken, which in most cases is 0. The next three num 
bers gated out of the initialization memory are the first 
modulating index, I, the second modulating index, I, 
and the signal amplitude A. I, , and A are actually 
locations in the scratchpad memory. The following is a 
list of the scratchpad memory locations and then the 
symbolic names. 

SP locations: 
pos 
fr 
fr108 
pos2 
fr2 
fr208 
pos3 
fr3 

; Fm2 
; Fm28 | 



-continued 
O l, ; Index 2 | 8 

11 ; Index 1 || 8 
12 A ; Amplitude envelope 
13 ti2 ; Temps 
4 
5 

Specifically, fr1 specifies the frequency of the second 
modulating index, pos1 is the angle of the second mod 
ulating sinusoid; fr2 and pos2 are the frequency of the 
first modulating waveform and the current angle of the 
first modulating waveform and fr3 and pos3 are the 
carrier frequency and its position; A, I and I are the 
amplitude envelope, index 1 and index 2, respectively. 
There are three temporary registers in the scratchpad 
memory designated t1, t2 and ti2. Two other numbers 
fr108, fr208 are the modulating frequencies times 8. 
This is a constant offset and is used because in actuality 
and indexes are divided by 8 to provide scaling because 
of a fixed point system. 

Lastly, FIG. 11 shows the tristate buffers that gate the 
initialization memory onto the data bus. 
FIG. 12 illustrates the scratchpad memory 26 (FIG. 

5). This contains the scratchpad memory itself which 
are four read/write memories. These are four sixteen 
bit memories. Data into the scratchpad memory comes 
out of selector 36. The selector is selected by WS0 and 
1 which comes out of the instruction word as shown in 
FIG. 6. This can gate in either the output of the multi 
plier which is MP0 through 15, the adder AO0 through 
15, the sine table STO through 15 and the frequency 
memory FTO through 15 and the selector produces an 
intermediate signal OI0 through 15 which goes directly 
into the scratchpad memory data inputs. The scratch 
pad memory is always reading but it is also write en 
abled by WE which is a bit in the instruction word; that 
is, write enable, WE, and its clock ILOAD. 
The write enable on the scratchpad memory is true if 

WE, the write enable bit of the instruction word is true. 
It is clocked on not I load, that is, the falling edge of the 
instruction load. This will set the write enable true and 
as soon as the latch timing signal comes up, the write 
enable will be turned off; that is, presumably the data 
will have been written by then. 
The circuit of FIG. 13 accomplishes three different 

things related to the data bus. It can gate scratchpad 
memory output which is Mem 0 through 15 onto the 
data bus and it can gate zeros onto the data bus. This is, 
of course, important for the envelope control during 
steady state where the amplitudes and modulation indi 
ces are not changing. Also zeros can be gated onto the 
high order bits of the bus if the LOB, low order bit 
signal is true in the instruction word. This is for doing 
sine table interpolation. Finally, the third thing which is 
gated is a constant of 4; that is, the higher bits on 94 of 
a rotation onto the bus. This is controlled by signal C1 
which is one of the read enables; that is, REO through 
2 go into a demultiplexer which will produce one of the 
signals C1. This is a constant which is added to the 
angle of the sine to get a cosine. It is essentially 3/2 pi. 
On the left hand side of the bus are gates 68 that 

control operations. For instance, it is desired in a 
steady state condition to gate 0 on the low order bits 
8-15 of the bus on the condition that the initialization 
memory, the IM signal, is being read from and the 
constant C1 from the envelope is present. It is the OR 
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14 
of those conditions which produces a signal ENBGND 
8-15, enabled ground, on 8 through 15 and this in turn 
controls the tristate latches which will gate ground on 
the low order bits of the bus. The high order bits will 
gate bits 0 through 5 and bits 6 through 7 slightly differ 
ently. That is, all the bits are ground on the condition 
for that of steady state for the envelope. The only rea 
son bits 0 through 5 are gated differently from bits 6 
through 7 is that the constant C1 only occupies the first 
6 bits and the rest of them of zeros. If C1 is true, then 
zeros are gated onto bits 6 through 15 of the bus and 
ground is enabled; that is, zeros are enabled on 6 
through 7 separately; and the condition under which 
zeros are gated on 6 through 7 are if LOB is true; that 
is, low order bits are being gated. Zeros are gated onto 
the high order bits of the data bus from the instruction 
word if ENV and not count enable, CNTEN, are true; 
that is, if there is an envelope request and are in steady 
state or there is an instruction memory or an initializa 
tion memory request, or if the constant is being gated 
onto the bus. Zeros will also be gated onto the bus bits 
0 through 5 if LOB is true; that is, low order bits only 
and if envelope control and steady state are true. 
FIG. 14 illustrates the adder 32. It has three parts; a 

16 bit adder 70 and two input latches 71,72. The input 
latches are strobed or made to latch data from the bus, 
16 bits, on the AL1 and AL2 signals; AL1 latches 71 
and AL2 latches 72. The output of these latches goes 
directly into the 16 bit adder 70. The output of the 
adder is called AO 0 through 15. It is a 16 bit number. 
The output of the adder goes to two different places; 
sine table input latch and the scratchpad memory write 
select. When the angle of a sinusoid is being updated 
the angular increment is added to it and at the same 
time this data can go to the sine table. Thus, not only 
can the updated angle be stored back in the scratchpad 
memory but the sine table loop up can be started at the 
same time. 
FIGS. 15 and 16 control the 16 bit multiplier 31 

(FIG. 5). The 16 bit multiplier has two latches, a third 
latch for the partial product, a 16 bit adder, a 16 bit 
gate which gates the multiplicand into the 16 bit adder 
to add it to the partial product when shifted and it has 
some control logic. The control logic is essentially the 
multiplier latch which is actually a shift register 73 and 
a counter 74 that will count 15 times and then stop. It 
operates as follows: on signal MPL2 the multiplicandis 
latched into one of the multiplier latches. On signal 
MPL1 the multiplier is latched into a 16 bit shift regis 
ter, and MPL1 also resets the multiplier control circuit. 
That is, the fall of MPL1 will gate MP load true which 
causes on the next fall of MP step, the counter to load. 
The counter is loaded with +1 to take 15 steps not 16. 
MP step is produced by MP GO and master clock flip 
flop 76. However, for synchronizing purposes the out 
put is gated round into the input. The sequence of 
operation is as follows: MPL1 (the signal which con 
trols the gating of the multiplier input latch) and that 
gates MP load true which causes the load enable of the 
counter to go true and then on the next master clock, 
the counter will get loaded with a +1 and MPGO will be 
brought ture which will cause MP load to become false; 
then once MP GO is true, then each MP step is cycling 
the multiplier. With the multiplier itself the serial out 
put of the 16 bit input latch 77 and shift register 73 is 
called MC enable (multiplicand enable) and is coupled 
into a set of gates 78 (FIG. 16) which will gate the 
multiplier into the adders 79 and which adds the partial 
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product to the multiplier. At each step the MC enable 
or multiplicand enable will either gate the multiplicand 
into the adders or not. So all 15 bits of the multiplier 
are stepped through. The partial product is latched by 
latch 81 into a 16 bit register on the output. This is not 
shown on the block diagram but is internal to the 16 bit 
multiplier block. An output controlled by MP step. The 
output of latch 84, the signals MP 0 through MP 15, is 
the partial product which becomes the product after 
the last multiplier step. The shifting right of the partial 
product is accomplished in FIG. 16 simply by the or 
dering of the bits as they go back into the adder; that is, 
the bits are shifted right by one. In the first adder 79 
there is the sign bit twice MP0 as the first two bits. That 
is, an arithmetic two complement shift right where 
copy the sign bit is copied into the vacated places; that 
is, the low order bit is discarded on every cycle because 
a multiply will eventually end up with a 31 bit resultant 
and all that is necessary is 16 bits. The multiplier is 
stopped by the counter 74 overflowing and this pro 
duces MP clear which turns off MP 60 and the multi 
plier halts. The product is available at the multiplier 
output (latch 81) as signals MP0 through 15. These 
multiplier output signals will remain true, of course, 
until the next time multiplication is begun. The total 
multiplication takes 15 clock steps. A clock step is 
about 200 nanoseconds so the whole multiply takes 3 
microseconds or roughly five instruction cycles. Thus 
on the fifth instruction cycle after the multiplication is 
initialized, the output can be used. 

ENSTRUCTION MEMORY locations 
RUNNING program 
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The device is also busy doing other things during that 

time. It is slightly pipelined; that is, the multiplier may 
be loaded up and while computing other things like 
update amplitude or modulating index may be accom 
plished. 
FIG. 17 is the output register and it is gated on the 

signal "load out buf" which is produced by the latch 
select bits LS0 through 1 from the instruction word; 
this grabs 16 bits off of the bus and latches them. The 
program goes through computing what the output 
waveform should be and then at the very last step it 
gates the waveform onto the data bus and strobes "load 
out buf' which causes the output word to be sent to the 
D to A converter 22 (FIG. 5). 
FIG. 18 is a sine table. It consists of a 256 - 16 bit 

word read only memory. The output of the read only 
memory is called ST0 through 15 and goes back into 
the input selector for the scratchpad memory. The 
address for the sine table comes out of the adder output 
AO0 through 7; that is, only the high order 8 bits are 
looked at and latched on the signal ST which is again 
generated from the latch select bits from the instruc 
tion word LS0 through 2. When ST occurs, the adder 
output is latched and produces internal signals which 
are SA0 through 7; that is, the sine address or sine 
angle. With these memories, it can take as long as a 
microsecond to get the data out so one microsecond 
later or roughly two instruction cycles, the sine is avail 
able for use. 
The running program for the foregoing is shown be 

low. 

ISel,MAWS, LS,RE,LOBSSELNE 
O123456789012345 

0. pos1-GAL1 0,0,0,3,0,0,0 000000001 00000 

l fri-SAL2 0,1,0.4, l,0,0,0 00001000000000 

2 AC-Geposi, AO-DST 0,0,1,5,0,0,0,1 0000001101000001 

3 12-CAL1 0, 10,0,3,1,0,0,0 0.100000011001000 

4 MO-Got1-Goutbuf 0,140,7,1,0,0,1 01 10000 10000 

5 ST-Set 1-GML2 0,14,2,2,1,0,0,1 0 1 10010010001001 

6 12-me ML1 0, 10,0,1,1,0,0,0 000000001001000 

7 env(00)-seAL2 0,0,0,4,5,0,0,0 000000010010000 

10 AO-GI2 1,10,1,0,0,0,0,1 1 10000000000001 

pos2-GAL1 1,3,2,3,1,0,0,0 100 0001100000 

12 fr2->AL2 4,0,4, 1,0,0,0 01.00000000000 

13 AO-G pos2, AO-SST 13,1,5,0,0,0,1 100 0 1 0100000 

14 MO-Get-GML2 1, 14,0,2,1,0,0,1 1 1000001000001 

15 fr108-GML1 1,2,0,1,1,0,0,0 1001000001001000 

16 pos2-GAL1 13,0,3,1,0,0,0 10011000 1001000 

17 C1-GAL2 l,0,0,4,3,0,0,0 1000000000 1000 

20 ST-Got1, AO->ST l, 14,2,5,0,0,0,1 1 1 000000000 

21 I1-S-AL1 l, 10,3,1,0,0,0 110010001001000 

22 env(10)-G-AL2 1,0,0,4,5,0,0,0 1000000100101000 

23 MO-Goti2 1, 13,0,0,0,0,1,1 110110000000001 

24 ST-Get2-GML2 l,15,2,2,10,1,1 1110100100001 
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INSTRUCTION MEMORY locations Isel,MAWs,LS,RE,LOBSSELNE 
RUNNING program 10123456789012345 

25 pos2(lob)-SMLl 13,0,1,1,1,10 000000000 

26 AO-Sel 1,11,0,0,0,1,1 100101000000011 

27 A-GAL1 1,120.3, 1,0,1,0 1101000011001010 
30 env(11)->AL2 10,04.5.0.1.0 1000000100101010 
31 AO-GOA 0,12,1,0,0,0,0,0 001001000000000 

32 t1->AL2 0.1404.1,000 0110000100001000 
33 nop 0 O 

34 MO-et-GAL 0,140,3,0,0,1 01 1000001100100 

35 Ao-Ot1-GML2 0,14, 1,2,1,0,0,1 00001010001001 
36 11-GMLl 0,11,0,1,1,0,0,0 01.000000100000 
37 nop 0 0 
40 nop 0 O 
41 nop O 0 
42 nop 0 0 
43 nop 0. 0. 

44 MO-Dt1-GML2 0, 14,0,2,0,0,0 000000000000 
45 fr2o8->ML 0.5,0,1,1,0,0,0 0000000001000 
46 nop 0. 0. 
47 nop 0. 0 
SO nop 0. O 
S1 nop 0 O 

S2 ti2-S-AL1 0, 3,0,3,1,0,0,0 001 1000 1001000 

53 MO-Ot1-GPAL2 0,140,4,,0,0,1 O 1000000001001 

54 AO-Sti2-OAL2 0,13,14, 1,0,0,1 0101101100001001 
S5 pos3-GAL1 0.6,0.3, 1,0,0,0 001 100001100000 

56 AO-Oti2, AO-DST 0,13,15,0,0,0,1 01010101000001 
57 ti2-GAL1 0,13,0,3,1,0,0,0 01011 0001100,000 

60 C1-GAL2 0,0,0,4,3,0,0,0 0000000000000 

61 ST-Setl, AO-GST 0,4,2,5,0,0,0,0 01.000101000000 
62 nop O O 

63 ti2(lob)->ML2 0,13,0,2,1,1,0,0 001 00010001100 

64 ST-Ot2-OMLl 0,15,2,1,1,0,0,1 0.10110001001001 
65 pos3-DAL2 0.6,0.4, 1,0,0,0 001 100010000000 

66 fr3-GPAL1 0,40,3,1,0,0,0 0010000011001000 

67 AO->pos3 0,6,0,0,0,0,1 0000100000000 
70 nop 0 0 
7 nop O 0 

72 MO-D2-OALl 0, 15,0,3,,0,0, 0.100001100001 
73 t-DAL2 0,150,4, 1,0,0,0, O 1010010000000 

74 AO-Gott-SeML2 0,14,12,1,0,0,1 01 100000001001 

75 A-eML.1 0, 12,0,1,1,0,0,0 0.1000000100000 

76 -DEL 0,0,0,6,0,0,0,0 00000000000000 
77 nop 0 O 

In the above running program the left hand column 
has the actual program counter number in octal form. 
The second column is a shorthand notation for describ 
ing where data is flowing. In general, the adder latches 
are AL1 and AL3, multiplier latches are ML1 and 65 
ML2, the sine table latches ST, the envelope memory is 
ENV. For the state of bits Isel and Ssel they are ENV 
(00, 01, 10, 11) to reflect the four possible states. For 

the writing back into the scratchpad memory there is 
either AO for adder output, MO for multiplier output, 
ST for sine table and FT for frequency table. This is, 
only in initialization, of course. 
The program of TABLE I is repeatedly processed by 

the apparatus of FIG. 5. In so doing, the apparatus of 
FIG. 5 iteratively performs calculations which are an 
approximation of Equation (2). The instructions of 

  



4,018, 121 
19 

TABLE I are stored in the instruction memory 41 of 
FIG. 5. The instructions are accessed in order, from 
Instruction 0 to Instruction 77, to complete one pass 
through TABLE I. After each pass through TABLE I, 
Instructions 0 through 77 are again accessed to com 
plete a new pass through TABLE I. 
The final calculation for each pass through TABLE I 

is set up by latching quantities into the input latches of 
multiplier 31. Those quantities are latched during In 
structions 74 and 75. The product of those quantities, 10 
latched in the multiplier during Instructions 74 and 75, 
becomes available on the multiplier 31 output (MO) 
approximately five instruction cycles later. Five in 
struction cycles later, for any given pass through the 
TABLE I instructions, actually occurs in the next pass 15 
through TABLE I. In the next pass through TABLE I, 
Instruction 4 transfers the output from multiplier 31 to 
latches 33. . . 

For each pass through TABLEl, a new value is gated 
into the output latches 33 in FIG. 5. The digital-to- 20 
analog converter 22 converts the data stored in latches 
33 to an analog signal which in turn is converted to a 
musical sound in speaker 23. 
The TABLE I instructions evaluate Equation (2) 5 the modulation indexes are selected as 8 times (Aalt) utilizing an interpolation technique for evaluating the 

sine terms in Equation (2). Also the instructions of 
TABLE employ scaling factors for the modulation 
indexes. The interpolation technique, the scaling fac 
tors and the equations actually iterated by the TABLE 3 o 
I instructions will now be described. . 
Equation (2) includes three sine terms. In order to 

accurately evaluate the sine terms with a comparatively 
small sine table (256-word sine memory 34 of FIG. 5), 
two of the three sine values in Equation (2) are evalu 
ated using an interpolation technique. Evaluation of 
the third sine term (sinot), however, does not employ . . 
the interpolation technique when this term represents 
the grit function for producing inharmonic partials 
which do not require the greater accuracy achieved by 40 
interpolation. 
The interpolation involves separately utilizing the 

high-order bits and the low-order bits of angles. 
As previously indicated, the sine memory 34 in FIG. 

5 is addressed by only the eight high-order bits of an 
gles from the adder 32. The angles in the apparatus of 
FIG. 5, and particularly those output from adder 32, 
are defined by 16-bit binary numbers. While the sine 
memory 34 only receives the high-order eight bits, the 
interpolation technique employs the low-order eight so 
bits to form a more accurate evaluation of the sine 
term. 

In order to do the interpolation, an angle such as the 
at modulating frequency is defined by two parts. The 
angle omit is equal to the high-order bits of omit (here- 55 
inafter hob: ont) plus the low-order bits of out (here 
inafter lob: alt). The term sin(ot) is given therefore 
by the following Equation (3). 

sin(at) = sin(hob: cott - lob: alt) (3) 60 

Using the sum of angles formula, Equation (3) is 
expanded to the following Equation (4). 

sin(hob: at lob: cut) as sin(hob: ot)cos(lob: 
- cont) - sin(lob: alt)cos(hob: ott) (4) 65 

In Equation (4), (hob: ot) is much, much greater 
(256 times greater) than (lob: ont). Under these con 

35 

20 
ditions, the term cos(lob: cont) is approximately equal 
to unity and the term sin(lob: cont) is approximately 
equal to (lob:aint) itself. Using those approximations, 
the value of the sin(out) is given by the following 
Equation (5). : 

sin(cut) = sin(hob: alt) -- (lob: alt)cos(hob: , 
abat) (5) 

By using Equation (5), the accuracy with which the 
sine terms are calculated is as if sine memory 34 in FIG. 
5 had 4,000 locations rather than just 256 locations. Of 
course, the interpolation in accordance with Equation 
(5) can be avoided, merely by employing a larger sine 
memory 34 or by accepting less accurate results with 
an attendant deterioration in quality of the sound pro 
duced. . . 

In the TABLE evaluation of Equation (2), the mod 
ulation indexes I1(t) and I2(t) are divided by a con 
stant 8 to form modulation indexes I1 and I2, respec 
tively. In order to restore the modulation indexes to 
their full values, the modulation indexes I1 and I2 in 
TABLE I are each multiplied by a scaling factor which 
cancels the factor of 8 division. The scaling factors for 

for 1 and as 8 times (Acont) for 12. 
In the evaluation of Equation (2), the indexes I1(t) 

and 20t) are given by Equations (6) and (7). 
1(t) = (1) (8Aot) (6) 

I2(r) = (I2) (8Aa) . . (7) 

The program of TABLE I treats the amplitude A of 
Equation (2) as a function of time so that A becomes 
A( t). -. 
Using A(t) and the modulation indexes of Equations 

(6) and (7), Equation (2) becomes Equation (8) as 
follows. . . 

e = a(t)sino. + (ii) (8Aoit)sin(oil) + (12) 
(8AGlt)sin cost) (8) 

Note that the form of Equation (8) is like that of a 
differential equation in that it includes the Act and 
Aant terms. The incremental evaluation by TABLE I 
is like an integration which transforms differential 
equations like Equation (8) to equations like Equation 

In Equation (8), the overall angle for the first sine 
term is designated as X and therefore Equation (8) 
becomes the following Equation (9). 

e + A(t)sin(X) . (9) 

In Equation (9), the approximation like that em. 
ployed in Equation (5) is also employed to form the 
Equation (10) as follows: . - 

e =A(t) sin(hob:X) + (lob:X)cos(hob:X) (10) 

In Equation (8) the approximation of Equation (5) is 
also employed in connection with evaluating the 
sin(ant) term. Utilizing Equation (5) and Equation. 
(8), the value for X in Equation (10) is given by the following Equation (11). 

x=(ott (8A.) (11) (sinchobot)+(lobot 
)cos(hobot)+ (8Aart)(2)sin(hob:o) s ( ) 
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The program of Table I evaluates Equations (10) and 

(11) at many different incremental values of angles and 
amplitudes. For each pass through TABLE I, new in 
cremental values are added to the angles and ampli 
tudes and Equations (10) and (11) are evaluated with 
the new values to form an approximation of Equation 
(2). For each pass through TABLE I constant incre 
mental values Act, Aconit, and Aomat are added to each 
of the angles, act, omit, and ont, respectively. In a 
similar manner, each of the amplitudes A(t), 1, and I2 
are added to time-varying incremental values AA, AI1 
and AI2, respectively, for each pass through TABLE I. 
After the incremental values are added to the angles 
and the amplitudes in Equations (10) and (11), the 
addition, multiplication and sine functions of Equations 
(10) and (11) are performed as now described in con 
nection with the TABLE I program. 

In TABLE I, the instructions are numbered in accor 
dance with their octal address in the memory 41 of 
FIG. 5. The instructions are sequentially fetched from 
the memory 41 and executed by the FIG. 5 apparatus. 

In Instruction 0, the contents from the pos1 of the 
scratch pad memory 26 are gated to the AL1 latch of 
the adder 32. The location pos1 in the scratch pad 
memory stores the accumulated value for the angle 
cont. The old at value from pos1 has added to it an 
incremental angle Acomat to form a new comat value 
which is stored back into pos1 as hereafter explained. 

In Instruction 1, the contents of the fr1 location of 
the scratch pad memory 26 are gated to the AL2 latch 
of the adder 32. The fr1 location of the scratch pad 
memory stores the incremental angle Acomat which is 
added to the accumulated value of the modulation 
frequency ant by adder 32. 

In Instruction 2, the new value of at resulting from 
the addition set up in Instruction 0 and 1 at the output 
(AO) from adder 32 is stored into pos1 location of the 
scratch pad memory 26. Also, the eight high-order bits 
of the results of the addition from adder 32 are input to 
the sine memory 34 (ST) of FIG. 5. Memory 34 is 
therefore addressed to provide a value equal to sin(- 
hob:ot) which is the last factor in the last term of 
Equation (1 l). 
In Instruction 3, the accumulated value of 12 of the 

second modulation index is gated from the I2 location 
of scratch pad memory 26 to the AL1 latch of adder 
32. 
In Instruction 4, the output (MO) from the multiplier 

31 in FIG. 5 is gated to the output buffer latches 33 
through the t1 location of the scratch pad memory 26. 
The output (MO) from multiplier 31 is the product 
formed by multiplying the quantities stored in the mul 
tiplier latches ML1 and ML2 in Instructions 74 and 75 
of a prior pass through TABLE I. After completion of 
Instruction 77 for any particular pass through TABLE 
I, Instruction 0 is again accessed and a new pass 
through the TABLE I instructions is carried out. For 
each pass through the instructions of TABLE I, the 
multiplier output (MO) is stored in latches 33 by In 
struction 4. The output stored by Instruction 4 is an 
elevation of Equation (10) which was determined by 
the previous pass through TABLE I. 

In Instruction 5, the output (ST) from the sine mem 
ory 34, is stored first in the t1 location of the scratch 
pad memory 26 and then in the ML2 input latch 
(MPL2) of multiplier 31. The value stored in the ML2 
latch is sin(hob:ot) which is the last factor of the last 
term of Equation (11). 
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In Instruction 6, the accumulated value of the second 

modulation index I2 is gated from the I2 location of 
scratch pad memory 26 to the ML1 input latch 
(MPL1) of multiplier 31. 

In Instruction 7, the AI2 value to be added to the 
accumulated value of the second modulating index is 
accessed from the (00) locations of the envelope mem 
ory 27 and stored in the AL2 latch location of adder 
32. Depending upon what has been stored in memory 
27, the value of AI2 can change for each pass through 
TABLE I. In any case I2 is time varying in accordance 
with the present invention. 

In Instruction 10, the AI2 value from Instruction 7 
and the accumulated value of I2 from Instruction 3 
have been added and the sum is stored as a new 2 
value into the I2 location of scratch pad memory 26. 
The contents of the I2 location are now ready for use 
during the next pass through the TABLE I program. 

In Instruction 11, the accumulated value of the cont 
angle is read out from pos2 of the scratch pad memory 
to the AL1 latch of the adder 32. 

In Instruction 12, the Aont incremental angle is read 
out from the fr2 location of the scratch pad memory to 
the AL2 adder latch. 
In Instruction 13, the sum from the addition of the 

latched values in Instructions 11 and 12 is the new 
accumulated value of the angle cont. That new value is 
stored back into location pos2 of the scratch pad mem 
ory. Also the higher order bits of the sum output from 
the adder are utilized to address the sine memory. 

In Instruction 14, the product result of the multiplica 
tion initiated by the values latched in the multiplier in 
Instructions 5 and 6 is available and stored in the t1 
location of the scratch pad memory and then into the 
ML2 latch of the multiplier 31. The product formed 
and stored in the ML2 latch is the righthand two factors 
of the last term in Equation (11), that is, (12)sin(- 
hob:cont ). 

In Instruction 18, the 8Aa)nt scaling factor is read 
out from the fr108 location of the scratch pad memory 
and stored in the multiplier latch ML1. The multiplier 
31 commences multiplication of the values latched in 
Instructions 14 and 15 and the product result appears 
later at the time of Instruction 23. 

In Instruction 16, the accumulated value of the cont 
angle is transferred to the AL1 adder latch. 

In Instruction 17, a constant is read out from the 
store 29 of FIG. 5 and stored into the AL2 latch of 
adder 32. The constant is a binary representation of an 
odd number multiple of Tl2 (e.g., 37tl2) which when 
added to a sine angle shifts a sine function to a cosine 
function. 

In Instruction 20, the sum result of the addition of the 
values latched in Instructions 16 and 17 is available and 
input to the sine memory 34 of FIG. 5. At the same 
time, the previous output from the sine table addressing 
in Instruction 13 is stored in the t1 location of the 
scratch pad memory. The values stored in ti is sin(- 
hob:ont) which is a factor in the second term of the 
Equation (11). 
In Instruction 21, the accumulated value of the mod 

ulation index I1 is read out from the I1 location of the 
scratch pad memory and stored in the adder latch AL1. 

In Instruction 22, the incremental value AI1 of the 
first modulation index is read out from the (10) loca 
tions of the envelope memory 27 and stored in the AL2 
latch of the adder 32. Depending upon what has been 
stored in memory 27, the value of AI1 can change for 
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each pass through TABLE I. In any case, I1 is time 
varying. 

In Instruction 23, the product result of the multiplica 
tion initiated in Instructions 14 and 15 is available and 
is stored in the ti2 location of the scratch pad memory 
26. The product stored in the ti2 location is the last 
term of Equation (11). 

In Instruction 24, the output from the sine memory 
34, as addressed in the Instruction 20, is transferred 
through the t2 location of the scratch pad memory to 
the multiplier latch ML2. The value stored in latch 
ML2 is cos(hob:cont) which is a factor in the second 
term of Equation (11). 

In Instruction 25, the lower order eight bits of the 
accumulated value of the angle cont are read out from 
pos2 of the scratch pad memory and stored in the mul 
tiplier latch ML1. Multiplier 31 commences multiplica 
tion of the values latched in Instructions 24 and 25 and 
the product becomes available during Instruction 34. 

In Instruction 26, the addition of the quantities 
latched in Instructions 21 and 22 forms a sum which is 
the new accumulated value for the modulation index 1 
and which is stored in the I1 location of the scratchpad 
memory. 

In Instruction 27, the accumulated value of the am 
plitude envelope A is transferred from the A location of 
the scratch pad memory 26 to the adder latch AL. 

In Instruction 30, the incremental value AA is read 
out from locations (11) of the envelope memory 27 
and latched in the adder latch AL2. 

In Instruction 31, the new accumulated value A of 
the amplitude resulting from addition of the values 
latched in Instructions 27 and 30 is stored into the A 
location of the scratch pad memory. 

In Instruction 32, the contents of the t1 location of 
the scratch pad memory are latched into the adder 
latch AL2. The quantity in latch AL2 is the one stored 
previously into the t1 location in Instruction 20, that is, 
sin(hob:cont). 

In Instruction 33, no new operation is initiated, 
In Instruction 34, the results of the multiplication of 

quantities latched in Instructions 24 and 25 is available 
and the product is stored through the t1 location of the 
scratch pad memory into the adder latch AL1. The 
product stored in AL1 is term (lob:cont)cos(hob:cont) 
of Equation (11). 

In Instruction 35, the sum result of the addition of the 
values latched into the adder in Instructions 32 and 34 
is stored by way of the scratch pad location ti into the 
multiplier latch ML2. The contents of latch ML2 are 
sin(hob:conit) - (lob:omit)cos(hob:cont). 

In Instruction 36, the accumulated value 1 of the 
first modulation index is read out from the I1 location 
of the scratch pad memory and stored into the multi 
plier ML1 latch. The multiplication commences after 
Instruction 36 and the product is available during In 
struction 44. 

In Instructions 37 through 43, no new operations are 
initiated. 

In Instruction 44, the product of I1 times the quantity 
latched in Instruction 35 is stored into the multiplier 
latch ML2. This product is (1) sin(hob:ant) - 
(lob:ant)cos(hob:ont)) which is a part of Equation 
(11). 

In Instruction 45, the scaling factor (8Act) is read 
out from the scratch pad location fr208 and stored in 
the multiplier latch ML1. With Instruction 45, the mul 
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tiplication commences and the product is available in 
Instruction 53. 

In Instructions 46 through 51, no new operations are 
initiated. 

In Instruction 52, the contents from the scratch pad 
memory location ti2 are stored into the adder latch AL. 
Adder latch AL1 contains the quantity which was 
stored in the tlocation in Instruction 23, and which is 
the last term of Equation (11). 

In Instruction 53, the product resulting from multipli 
cation of the quantities latched in the multiplier in 
Instructions 44 and 45 is available and is transferred 
through the t1 scratch pad location to the adder latch 
AL2. The quantities now in the adder latch AL2 is the 
second term of Equation (11), namely, (8Aant)(1)- 
(sin(hob:cont) -- (lob:ont)cos(hob:cont). 
In Instruction 54, the quantities latched in Instruc 

tions 52 and 53 are added and the sum result is stored 
in location ti2 of the scratch pad memory and then 
transferred to the AL2 latch of the adder. The quantity 
in latch AL2 is the sum of the last two terms of Equa 
tion (11). 

In Instruction 55, the accumulated value ot for the 
carrier frequency angle is read out from pos3 of the 
scratch pad memory and stored in the adder latch AL1. 

In Instruction 56, the values latched in Instructions 
54 and 55 are added and the sum result is stored in the 
ti2 location of the scratchpad memory. The quantity in 
the location ti2 is now the value X as defined by Equa 
tion (11). The high-order bits of X from the adder 
output in Instruction 56 are input to address the sine 
memory. 

In Instruction 57, the value of X from the ti2 scratch 
pad memory location is latched into the adder latch 
AL1. 

In Instruction 60, a constant C1 is accessed from the 
binary constant store 29 and stored in adder latch AL2. 

In Instruction 61, the output from the sine memory 
sin(hob:X), which is a factor in Equation (10), is stored 
in the scratch pad memory location til. At the same 
time, the output from the adder, which is the sum of the 
values latched in Instructions 57 and 60, is input to the 
sine memory. The addition of the quantities latched in 
Instructions 57 and 60 converts the sine function to a 
cosine function, namely, to cos(hob:X). 

In Instruction 62, no new operation is initiated. 
In Instruction 63, the eight low-order bits of the ti2 

location of the scratch pad memory are input to the 
multiplier latch ML2 so that ML2 stores (lob:X). 

In Instruction 64, the output from the sine table ad 
dressed in Instruction 61, is transferred to the t2 loca 
tion of the scratch pad memory and then to the multi 
plier latch ML1 so that ML1 stores cos(hob:X). 

Multiplication commences and the product of the 
values latched in Instructions 63 and 64 is available in 
Instruction 72. 

In Instruction 65, the accumulated value at of the 
carrier angle is transferred from the scratch pad mem 
ory location pos3 to the adder latch AL2. 

In Instruction 66, the incremental angle Aat is read 
out from the scratch pad memory location fr3 and 
stored in the adder latch AL1. 

In Instruction 67, the values latched in Instructions 
65 and 66 are added to form the new accumulated sum 
act which is stored into the scratch pad memory loca 
tion pos3. 

In Instructions 70 and 71, no new operations are 
initiated. 
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in Instruction 72, the product of the quantities 

latched in Instructions 63 and 64 is stored in the t2 
location of the scratch pad memory and then into the 
adder latch AL1. The quantity in latch AL1 is the right 
hand term of Equation (10), namely, (lob:X)cos(- 
hob:X). 
In Instruction 73, the contents of the t1 scratch pad 

memory location are stored in the adder latch AL2. 
Latch AL2 at this time stores the quantity sin(hob:X) 
which is the lefthand term in Equation (10) and which 
was stored in til in Instruction 61. 

In Instruction 74, the sum of the quantities latched in 
Instructions 72 and 73 is available on the output from 
the adder and is stored into scratch pad memory loca 
tion ti and from there into the multiplier latch ML2. 
The quantity in latch ML2 is sin(hob:X) + (lob:X- 
)cos(hob:X)). 

In Instruction 75, the amplitude value A from the A 
location of the scratch pad memory is latched into the 
multiplier latch ML1 and starts the multiplication of 
the quantities latched in Instructions 74 and 75. The 
multiplication started by Instruction 75 is not complete 
until at least five instruction cycles later. When com 
plete, the final product A(t)(sin(hob:X) + (lob:X- 
)cos(hob:X) is formed which equals the value e of 
Equation (10). The final product for one pass through 
TABLE becomes available in Instruction 4 of the next 
pass through TABLE I. 

claim: ... . . . . . . . 

1. A method of synthesizing a musical sound com 
posed of a plurality of component frequencies and 
characterized by a time-varying amplitude envelope 
having a time-varying attack portion, a substantially 
steadystate portion and a time-varying decay portion, 
the steps comprising, 
generating a signal a to define a carrier frequency in 
the audio range, 

generating a signal a) to define a modulation fre 
quency in the audio range, 

generating a signal (t) to define a time-varying mod 
ulation index, 

frequency modulating a with a to form a frequency 
modulated wave defined by e = Asin (at + I(t) sin 
ot) where e defines the instantaneous amplitude 
of said wave, A defines the peak amplitude of said 
wave, and at + I(t) sin at defines the frequency 
spectrum of said wave wherein the frequency spec 
trum of said wave changes as a function of the 
modulation index I(t) to form a representation of 
said sound. 

2. A method as in claim 1 including the step of vary 
ing (t) as a function of the attack portion of said ampli 
tude envelope. 
3. In a digital apparatus having storage means for 

storing signals including an audio-range carrier fre 
quency signal ac, including an audio-range modulation 
frequency signal all, including a time-varying modula 
tion index signal (t), and including an output ampli 
tude signal A; having waveform means for providing 
waveform signals as a function of input angles; and 
having arithmetic means for arithmetically combining 
signals; a method of synthesizing a musical sound com 
prising the steps of, 
accessing from said storage means, periodically with 
time t, the signals al., a, I(t) and A, 

transferring said signal () as an input angle to said 
waveform means to provide periodically a modula 
tion waveform signal, 
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multiplying, in said arithmetic means, said modula 
tion waveform signal and a value of said signal I(t) 
to form periodically a modulation component sig 
nal, 

adding, in said arithmetic means, said modulation 
component signal and the signal a) to obtain peri 
odically an output angle signal, 

transferring said output angle signal to said waveform 
means to obtain periodically an output waveform 
signal, 

multiplying, in said arithmetic means, said output 
waveform signal by said signal A to provide an 
output signal to produce said musical sound. 

4. An apparatus for electrically synthesizing musical 
sound comprising, 

store means for storing signals proportional to ampli 
tudes A of an output signal e, for storing signals 
proportional to audio-range carrier frequencies oc, 
for storing signals proportional to modulation fre 
quencies (), for storing signals proportional to 
amplitude modulation indexes I(t) where I(t) var 

, ies as a function of time t, 
accessing means for accessing said signals, periodi 

cally with time t, from said store means, 
processing means for processing said signals accessed 
from said store means to form said output signal 
equal to A sin ot + I(t) sin cont), 

audio transducer means responsive to said output 
signal for providing an audio signal output repre 
senting said musical sound. 

5. An apparatus for synthesizing musical sound com 
posed of a plurality offrequency components and char 
acterized by a time-varying amplitude envelope includ 
ing a time-varying attack portion, a substantially 
steady-state portion and a time-varying decay portion, 
said apparatus comprising, 
sine wave means for producing signals proportional 
to the sine of input angles, 

an adder, 
a multiplier, 
a temporary store, 
frequency store means for storing values of audio 
range frequency signals including carrier frequency 
signals at and modulation frequency signals ot, 

amplitude store means for storing amplitude signals 
including time-varying amplitude modulation sig 
nals (t) and output amplitude signals A, 

means for connecting periodically a modulation fre 
quency signal cut as an input angle to said sine 
wave means to produce signal sin at in said tem 
porary store, 

means for connecting periodically said signal sin ot 
to said multiplier and means for connecting period 
ically time-varying values of said signal I(t) to said 
multiplier to form periodically a product signal I(t) 
sin cut in said temporary store, 

means for connecting periodically said signal (t) sin 
at to said adder means and means for connecting 
periodically a carrier frequency signal at to said 
adder to form periodically a sum signal at + I(t) 
sin cont) in said temporary store, 

means for connecting periodically said signal at + 
I(t) sin cont) as an input angle to said sine wave 
means whereby said sine wave means periodically 
provides a signal sin ot + I(t) sin ot) in said 
temporary store, 

means for connecting periodically said signal sin ot 
+ I(t) sin at ) to said multiplier and means for 
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connecting periodically an amplitude value A to 
said multiplier to provide periodically an output 
signal A sin (at + I(t) sin a t) in said temporary 
store, 

audio transducer means responsive to said output 
signal for providing an audio signal representing 
said musical sound. 

6. The apparatus of claim 5, wherein said frequency 
store means includes means for storing said signals at 
and at such that a is an integral multiple of a 
whereby said output signal has a frequency spectrum 
including only odd harmonics. 
7. The apparatus of claim 6 wherein said frequency 

store means includes means for storing said signals at 
and at such that the ratio alo is equal to 2/1. 
8. The apparatus of claim 5 wherein said amplitude 

store means includes means for storing said modulation 
index signal I(t) directly proportional to said attack 
portion of said amplitude envelope and said frequency 
store means includes means for storing the signals at 
and ot, such that the ratio ala) is equal to all 
whereby the frequency spectrum of said output signal 
includes both odd and even harmonics for producing 
musical sound with the timbrel quality of brass instru 
ments. 
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9. The apparatus of claim 8 where said means for 

storing the signals at and at stores values such that 
aela) is equal to 1/l. 

10. The apparatus of claim 5 in which said frequency 
store means includes means for storing cut and ont 
such that the ratio of ae?a) is equal to an irrational 
number whereby the frequency spectrum of said output 
signal includes inharmonic frequencies. 

11. The apparatus of claim 5 wherein said frequency 
store means includes means for storing the frequency 
signals at equals to act - act where act and (02 are 
unequal frequencies. 

12. The apparatus of claim 11 where said frequency 
store means store act, at and a such that the ratio 
al?o is equal to 7/1 and such that the ratio allon is 
equal to 1/1. 

13. The apparatus of claim 5 wherein said frequency 
store means includes means for storing said frequency 
signals at as first frequency signals out and second 
frequency signals at, wherein said amplitude store 
means includes means for storing said modulation sig 
nals I(t) as first amplitude modulation signals (t) and 
as second amplitude modulation signals I,(t), whereby 
said output signal is Asin Iot + I(t) sin out +(t) sin 
Cong 

14. The apparatus of claim 5 wherein said amplitude 
store means includes means for storing said output 
amplitude signals A as a function of said time-varying 
amplitude envelope. 
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